Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$|x-2|\geq 0$ với mọi $x\in\mathbb{R}$ (tính chất trị tuyệt đối)
$\Rightarrow A=|x-2|+5\geq 5$
Vậy $A_{\min}=5$ khi $x-2=0\Leftrightarrow x=2$
ta có
\(A=\left|x-8\right|+\left|x+2\right|+\left|x+5\right|+\left|x+7\right|\ge\left|-x+8-x-2+x+5+x+7\right|=18\)
Dấu bằng xảy ra khi \(-5\le x\le-2\)
\(B=\left|x+3\right|+\left|x-5\right|+\left|x-2\right|\ge\left|x+3-x+5\right|+\left|x-2\right|=8+\left|x-2\right|\ge8\)
Dấu bằng xảy ra khi \(x=2\)
\(C=\left|x+5\right|-\left|x-2\right|\le\left|x+5+2-x\right|=7\)
Dấu bằng xảy ra khi \(x\ge2\)
\(A=\dfrac{5x^2+3y^2}{10x^2-3y^2}\)Thay \(\dfrac{x}{3}=\dfrac{y}{5}=k\Rightarrow x=3k;y=5k\)vào ta đc
\(A=\dfrac{5.9k^2+3.25k^2}{10.9k^2-3.25k^2}=\dfrac{120k^2}{15k^2}=8\)
a. Ta có: ( x-2)2 \(\ge\) 0 , \(\forall\) x
=> ( x-2)2 +2023 \(\ge\) 2023
Vậy ...
Dấu bằng xảy ra khi x-2 = 0
b. (x-3)2+(y-2)2-2018
Ta có: \((x-3)^2 \ge0,\forall x\)
\((y-2) ^2 \ge0,\forall y\)
=> ( x-3)2 + ( y-2)2 \(\ge\) 0
=> ( x-3)2 + ( y-2)2-2018 \(\ge\) -2018, \(\forall\) x,y
Vậy ...
Dấu bằng xảy ra khi x-3=0
y-2=0
c. ( x+1)2 +100
Ta có : ( x+1)2 \(\ge0,\forall x\)
=> ( x+1)2+100 \(\ge\) 100
Vậy ...
Dấu bằng xảy ra khi x+1=0
a) -(3 - x)¹⁰⁰ - 3(y + 2)²⁰⁰ + 2003
Ta có:
(3 - x)¹⁰⁰ ≥ 0
⇒ -(3 - x)¹⁰⁰ ≤ 0
(y + 2)²⁰⁰ ≥ 0
⇒ -3(y + 2)²⁰⁰ ≤ 0
⇒ -(3 - x)¹⁰⁰ - 3(y + 2)²⁰⁰ ≤ 0
⇒ -(3 - x)¹⁰⁰ - 3(y + 2)²⁰⁰ + 2023 ≤ 2023
Vậy giá trị lớn nhất của biểu thức đã cho là 2023 khi x = 3 và y = -2
b) (x² + 3)² + 125
= x⁴ + 6x² + 9 + 125
= x⁴ + 6x² + 134
Ta có:
x⁴ ≥ 0
x² ≥ 0
⇒ 6x² ≥ 0
⇒ x⁴ + 6x² ≥ 0
⇒ x⁴ + 6x² + 134 ≥ 134
⇒ (x² + 3)² + 125 ≥ 134
Vậy giá trị nhỏ nhất của biểu thức đã cho là 134
c) -(x - 20)²⁰⁰ - 2(y + 5)¹⁰⁰ + 2022
Ta có:
(x - 20)²⁰⁰ ≥ 0
⇒ -(x - 20)²⁰⁰ ≤ 0
(y + 5)¹⁰⁰ ≥ 0
⇒ -2(y + 5)¹⁰⁰ ≤ 0
⇒ -(x - 20)²⁰⁰ - 2(y + 5)¹⁰⁰ ≤ 0
⇒ -(x - 20)²⁰⁰ - 2(y + 5)¹⁰⁰ + 2022 ≤ 2022
Vậy giá trị lớn nhất của biểu thức đã cho là 2022 khi x = 20 và y = -5
bài 2
Ta có:
\(A=\left|x-102\right|+\left|2-x\right|\Rightarrow A\ge\left|x-102+2-x\right|=-100\Rightarrow GTNNcủaAlà-100\)đạt được khi \(\left|x-102\right|.\left|2-x\right|=0\)
Trường hợp 1: \(x-102>0\Rightarrow x>102\)
\(2-x>0\Rightarrow x< 2\)
\(\Rightarrow102< x< 2\left(loại\right)\)
Trường hợp 2:\(x-102< 0\Rightarrow x< 102\)
\(2-x< 0\Rightarrow x>2\)
\(\Rightarrow2< x< 102\left(nhận\right)\)
Vậy GTNN của A là -100 đạt được khi 2<x<102.
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\), ta có:
\(A=\left|x+3\right|+\left|x-5\right|\)
\(A=\left|x+3\right|+\left|-\left(-5\right)\right|\)
\(A=\left|x+3\right|+\left|-x+5\right|\ge\left|x+3=\left(-x\right)+5\right|=8\)
Đẳng thức xảy ra khi: \(-3\le x\le5\)
Vậy: \(A_{min}=8khi-3\le x\le5\)
Ta có A = |3 - x| + |5 + x| \(\ge\left|3-x+5+x\right|=\left|8\right|=8\)
Dấu "=" xảy ra <=> (3 - x )(5 + x) \(\ge0\)
Xét 2 trường hợp
TH1 : \(\hept{\begin{cases}3-x\ge0\\5+x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le3\\x\ge-5\end{cases}}\Leftrightarrow-5\le x\le3\)
TH2 : \(\hept{\begin{cases}3-x\le0\\5+x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le-5\end{cases}}\Leftrightarrow x\in\varnothing\)
Vậy Min A = 8 <=> -5 \(\le x\le3\)