Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
/x-3/>=0
/x-3/+10>=10
BTNN của A =10 khi x=3
(x-1)^2>=0
(x-1)^2-7>=-7
GTNN của B =-7 khi x=1
\(\left(x^2+1\right)+4=x^2+5\)
\(x^2\ge0\) với mọi x đẳng thức chỉ khi x=0
\(x^2+5\ge5\) => GTNN là 5 khi x=0
Để F là giá trị nhỏ nhất thì x phải đạt giá trị nhỏ nhất là 0
=>F=(x2 + 1)+4=(02 +1)+4
=(1+1)+4
=2+4
=6 Vậy F nhận giá trị nhỏ nhất là 6
1.
a) [124 - (20 - 4x)] : 30 + 7 = 11
=> [124 - (20 - 4x)] : 30 = 11 - 7
=> [124 - (20 - 4x)] : 30 = 4
=> 124 - (20 - 4x) = 4 x 30
=> 124 - (20 - 4x) = 120
=> 20 - 4x = 124 - 120
=> 20 - 4x = 4
=> 4x = 20 - 4
=> 4x = 16
=> x = 16 : 4
=> x = 4
Vậy x = 4
b) |2x - 5| = 1
TH1: 2x - 5 = 1
=> 2x = 1 + 5
=> 2x = 6
=> x = 6 : 2
=> x = 3
TH2: 2x - 5 = -1
=> 2x = -1 + 5
=> 2x = 4
=> x = 4 : 2
=> x = 2
Vậy x = 3 hoặc x = 2
A = \(\dfrac{2x-1}{x+2}\)
a, A là phân số ⇔ \(x\) + 2 # 0 ⇒ \(x\) # -2
b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2
⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2
⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2
⇒ 5 ⋮ \(x\) + 2
⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}
⇒ \(x\) \(\in\) { -7; -3; -1; 3}
c, A = \(\dfrac{2x-1}{x+2}\)
A = 2 - \(\dfrac{5}{x+2}\)
Với \(x\) \(\in\) Z và \(x\) < -3 ta có
\(x\) + 2 < - 3 + 2 = -1
⇒ \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\) = -5 ⇒ - \(\dfrac{5}{x+2}\)< 5
⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)
Với \(x\) > -3; \(x\) # - 2; \(x\in\) Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1
\(\dfrac{5}{x+2}\) > 0 ⇒ - \(\dfrac{5}{x+2}\) < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)
Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)
Kết hợp (1); (2) và(3) ta có A(max) = 7 ⇔ \(x\) = -3
Ta có
x ≥ 0 √ x ∈ Z
=> x2 + 1 ≥ 1
=> (x2 + 1)2 ≥ 12 = 1
=> F = (x2 + 1)2 + 4 ≥ 1 + 4 = 5
=> F = (x2 + 1)2 + 4 ≥ 5
Dấu "=" xảy ra khi x2 = 0 => x = 2
Vậy GTNN của F là 5 tại x = 0
Chỗ kia mình ấn nhầm ra bạn
Dấu "=" xảy ra khi x2 = 0 => x = 0