K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2016

MỚI HỌC LỚP 5, KO CÓ HIỂU

12 tháng 3 2016

a) ?A = 5x2 - 1

  Vì x2 \(\ge\) 0 nên 5x2 \(\ge\) 0.

 Dấu ''='' xảy ra khi và chỉ khi x = 0.

 Khi đó minA = -1

Vậy minA = -1 \(\Leftrightarrow\) x = 0

1/ a) TH1: x-2 = 0 => x= 0+2 = 2

       TH2: 5-x= 0 => x= 5-0 = 5

b)???

duyệt đi

a: -x^2<=0

=>-x^2+1<=1

=>A<=1

Dấu = xảy ra khi x=0

b: (x+1)^2>=0

=>-2(x+1)^2<=0

=>B<=8

Dấu = xảy ra khi x=-1

2 tháng 8 2023

`A = 2 + 2^2+ ... + 2^2017`

`=> 2A = 2^2 + 2^3 + ... + 2^2018`

`=> 2A - A = (2^2 + 2^3 + ... + 2^2018) - (2 + 2^2 + ... +2^2017)`

`=> A         = 2^2018 - 2`

`B = 1 + 3^2 + ... + 3^2018`

`=> 3^2B = 3^2 + 3^4 + ... + 3^2020`

`=> 9B-B =(3^2 + 3^4 + ... + 3^2020) - (1 + 3^2 + ... + 3^2018`

`=> 8B     = 3^2020 - 1`

`=> B       = (3^2020 - 1)/8`

`C = 5 + 5^2 - 5^3 + ... + 5^2018`

`=> 5C = 5^2 + 5^3 - 5^4 + ... +5^2019`

`=> 5C + C = ( 5^2 + 5^3 - 5^4 + ... 5^2019) + (5 + 5^2 - 5^3 + ... + 5^2018)`

`=> 6C = 55 + 5^2019`

`=> C  = (5^2019 + 55)/6`

27 tháng 8 2023

Bài 1 :

\(M=\dfrac{30-2^{20}}{2^{18}}=\dfrac{2.15-2^{20}}{2^{18}}=\dfrac{15}{2^{17}}-2^2=\dfrac{15}{2^{17}}-4< 0\left(\dfrac{15}{2^{17}}< 1\right)\)

\(N=\dfrac{3^5}{1^{2021}+2^3}=\dfrac{3^5}{9}=\dfrac{3^5}{3^2}=3^3=27\)

\(\Rightarrow M< N\)

27 tháng 8 2023

Bài 3 :

a) \(t^2+5t-8\) khi \(t=2\)

\(=5^2+2.5-8\)

\(=25+10-8\)

\(=27\)

b) \(\left(a+b\right)^2-\left(b-a\right)^3+2021\left(1\right)\)

\(\left\{{}\begin{matrix}a=5\\b=a+1=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=11\\b-a=1\end{matrix}\right.\)

\(\left(1\right)=11^2-1^3+2021=121-1+2021=2141\)

c) \(x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3\left(1\right)\)

\(\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\) \(\Rightarrow x-y=1\)

\(\left(1\right)=1^3=1\)

a) Để A có giá trị nhỏ nhất thì (x-7)2 0

Hay (x-7)2+ 2003 < 2003

Vì (x-7)2 luôn dương => GTNN của (x-7)2+ 2003 = 2003

Dấu = chỉ xảy ra khi (x-7)2=0

                            => x-7  =0

                               x       = 7

Vây GTNN của A = 2003 <=> x=7

b) Để B có GTLN thì -(x+2)2 > 0

Hay -(x+2)2+17 > 17

x thuộc tập N

11 tháng 3 2020

a) Ta có (x-7)2 >=0 với mọi x thuộc Z

=> (x-7)2 +2003 >= 2003 với mọi z thuộc Z

hay A >= 2003 

Dấu "=" xảy ra <=> (x-7)2=0 <=> x-7=0 <=> x=7

Vậy Min A=2003 đạt được khi x=7

b) Ta có -(x+2)2 =< 0 với mọi x thuộc Z

=> -(x+2)2+17 =< 17 với mọi x thuộc Z

hay B =< 17 

Dấu "=" <=> -(x+2)2=0

<=> x+2=0

<=> x=-2

Vậy MaxB=17 đạt được khi x=-2