Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ a) TH1: x-2 = 0 => x= 0+2 = 2
TH2: 5-x= 0 => x= 5-0 = 5
b)???
duyệt đi
a: -x^2<=0
=>-x^2+1<=1
=>A<=1
Dấu = xảy ra khi x=0
b: (x+1)^2>=0
=>-2(x+1)^2<=0
=>B<=8
Dấu = xảy ra khi x=-1
`A = 2 + 2^2+ ... + 2^2017`
`=> 2A = 2^2 + 2^3 + ... + 2^2018`
`=> 2A - A = (2^2 + 2^3 + ... + 2^2018) - (2 + 2^2 + ... +2^2017)`
`=> A = 2^2018 - 2`
`B = 1 + 3^2 + ... + 3^2018`
`=> 3^2B = 3^2 + 3^4 + ... + 3^2020`
`=> 9B-B =(3^2 + 3^4 + ... + 3^2020) - (1 + 3^2 + ... + 3^2018`
`=> 8B = 3^2020 - 1`
`=> B = (3^2020 - 1)/8`
`C = 5 + 5^2 - 5^3 + ... + 5^2018`
`=> 5C = 5^2 + 5^3 - 5^4 + ... +5^2019`
`=> 5C + C = ( 5^2 + 5^3 - 5^4 + ... 5^2019) + (5 + 5^2 - 5^3 + ... + 5^2018)`
`=> 6C = 55 + 5^2019`
`=> C = (5^2019 + 55)/6`
Bài 1 :
\(M=\dfrac{30-2^{20}}{2^{18}}=\dfrac{2.15-2^{20}}{2^{18}}=\dfrac{15}{2^{17}}-2^2=\dfrac{15}{2^{17}}-4< 0\left(\dfrac{15}{2^{17}}< 1\right)\)
\(N=\dfrac{3^5}{1^{2021}+2^3}=\dfrac{3^5}{9}=\dfrac{3^5}{3^2}=3^3=27\)
\(\Rightarrow M< N\)
Bài 3 :
a) \(t^2+5t-8\) khi \(t=2\)
\(=5^2+2.5-8\)
\(=25+10-8\)
\(=27\)
b) \(\left(a+b\right)^2-\left(b-a\right)^3+2021\left(1\right)\)
\(\left\{{}\begin{matrix}a=5\\b=a+1=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=11\\b-a=1\end{matrix}\right.\)
\(\left(1\right)=11^2-1^3+2021=121-1+2021=2141\)
c) \(x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3\left(1\right)\)
\(\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\) \(\Rightarrow x-y=1\)
\(\left(1\right)=1^3=1\)
a) Để A có giá trị nhỏ nhất thì (x-7)2 < 0
Hay (x-7)2+ 2003 < 2003
Vì (x-7)2 luôn dương => GTNN của (x-7)2+ 2003 = 2003
Dấu = chỉ xảy ra khi (x-7)2=0
=> x-7 =0
x = 7
Vây GTNN của A = 2003 <=> x=7
b) Để B có GTLN thì -(x+2)2 > 0
Hay -(x+2)2+17 > 17
x thuộc tập N
a) Ta có (x-7)2 >=0 với mọi x thuộc Z
=> (x-7)2 +2003 >= 2003 với mọi z thuộc Z
hay A >= 2003
Dấu "=" xảy ra <=> (x-7)2=0 <=> x-7=0 <=> x=7
Vậy Min A=2003 đạt được khi x=7
b) Ta có -(x+2)2 =< 0 với mọi x thuộc Z
=> -(x+2)2+17 =< 17 với mọi x thuộc Z
hay B =< 17
Dấu "=" <=> -(x+2)2=0
<=> x+2=0
<=> x=-2
Vậy MaxB=17 đạt được khi x=-2
MỚI HỌC LỚP 5, KO CÓ HIỂU
a) ?A = 5x2 - 1
Vì x2 \(\ge\) 0 nên 5x2 \(\ge\) 0.
Dấu ''='' xảy ra khi và chỉ khi x = 0.
Khi đó minA = -1
Vậy minA = -1 \(\Leftrightarrow\) x = 0