\(A=3.\left|2x-\dfrac{3}{2}\right|+2021^0\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2021

a) \(A=3\left|2x-\dfrac{3}{2}\right|+2021^0=3\left|2x-\dfrac{3}{2}\right|+1\ge1\)

\(minA=1\Leftrightarrow2x=\dfrac{3}{2}\Leftrightarrow x=\dfrac{3}{4}\)

b) \(B=2\left|x-6\right|+3\left(2y-1\right)^2+2021^0=2\left|x-6\right|+3\left(2y-1\right)^2+1\ge1\)

\(minB=1\Leftrightarrow\) \(\left\{{}\begin{matrix}x=6\\y=\dfrac{1}{2}\end{matrix}\right.\)

25 tháng 9 2021

\(A=3\left|2x-\dfrac{3}{2}\right|+1\ge1\\ A_{min}=1\Leftrightarrow2x-\dfrac{3}{2}=0\Leftrightarrow x=\dfrac{3}{4}\\ B=2\left|x-6\right|+3\left(2y-1\right)^2+1\ge1\\ B_{min}=1\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=\dfrac{1}{2}\end{matrix}\right.\)

29 tháng 7 2018

mik chỉ làm được một bài thôi cậu chọn đi bài nào nói với mik , mik làm cho

29 tháng 7 2018

Bài 1:

a) \(\left|x-\dfrac{2}{3}\right|+\left|y+x\right|=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left|x-\dfrac{2}{3}\right|=0\\\left|y+x\right|=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{2}{3}=0\\y+x=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-x\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-\dfrac{2}{3}\end{matrix}\right.\)

b) \(\left(x-2y\right)^2+\left|x+\dfrac{1}{6}\right|=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-2y\right)^2=0\\\left|x+\dfrac{1}{6}\right|=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=0\\x+\dfrac{1}{6}=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2y=x\\x=-\dfrac{1}{6}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2y=-\dfrac{1}{6}\\x=-\dfrac{1}{6}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{1}{12}\\x=\dfrac{-1}{6}\end{matrix}\right.\)

8 tháng 7 2021

a) Ta có \(\left(x-2\right)^2\ge0\forall x\)

=> Min A = 0

Dấu "=" xảy ra <=> x - 2 = 0 <=> x = 2

Vậy Min A = 0 <=> x = 2

b) Ta có \(\left(2x+1\right)^4\ge0\forall x\Rightarrow\left(2x+1\right)^4-98\ge-98\)

=> Min B = -98

Dấu "=" xảy ra <=> 2x + 1= 0 <=> x = -0,5

Vậy Min B = -98 <=> x = -0,5

c) Ta có  C = |x - 10| + |x - 11| 

= |x - 10| + |11 - x| \(\ge\left|x-10+11-x\right|=\left|1\right|=1\)

=> Min C = 1

Dấu "=" xảy ra <=> \(\left(x-10\right)\left(11-x\right)\ge0\)

TH1 : \(\hept{\begin{cases}x-10\ge0\\11-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge10\\x\le11\end{cases}}\Leftrightarrow10\le x\le11\)

TH2 : \(\hept{\begin{cases}x-10\le0\\11-x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le10\\x\ge11\end{cases}}\Leftrightarrow x\in\varnothing\)

Vậy Min C = 1 <=> \(10\le x\le11\)

28 tháng 11 2016

\(A=\left|x-3\right|+\left|y+3\right|+2016\)

\(\left|x-3\right|\ge0\)

\(\left|y+3\right|\ge0\)

\(\Rightarrow\left|x-3\right|+\left|y+3\right|+2016\ge2016\)

Dấu ''='' xảy ra khi \(x-3=y+3=0\)

\(x=3;y=-3\)

\(MinA=2016\Leftrightarrow x=3;y=-3\)

\(\left(x-10\right)+\left(2x-6\right)=8\)

\(x-10+2x-6=8\)

\(3x=8+10+6\)

\(3x=24\)

\(x=\frac{24}{3}\)

x = 8

11 tháng 2 2018

1. \(A=2x^2-5x-5\)

* Tại \(x=-2\) giá trị của biểu thức là :

\(A=2.\left(-2\right)^2-5.\left(-2\right)-5\)

\(A=8-\left(-10\right)-5=13\)

*Tại \(x=\dfrac{1}{2}\)

\(A=2\left(\dfrac{1}{2}\right)^2-5.\dfrac{1}{2}-5\)

\(A=-7\)

11 tháng 2 2018

Câu 3:

a) \(A=\left(x-3\right)^2+9\ge9,\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x-3=0\)

..........................\(\Leftrightarrow x=3\)

Vậy MIN A = 9 \(\Leftrightarrow x=3\)

P/s: câu b coi lại đề

c) \(\left|x-1\right|+\left(2y-1\right)^4+1\ge1;\forall x,y\)

Dấu "='' xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\2y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{1}{2}\end{matrix}\right.\)

Vậy .............................

Câu 5:

Ta có: \(A=\dfrac{x-5}{x-3}=\dfrac{x-3-2}{x-3}=1-\dfrac{2}{x-3}\)

Để A nguyên thì \(2⋮\left(x-3\right)\)

\(\Rightarrow\left(x-3\right)\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)

Do đó:

\(x-3=-2\Rightarrow x=1\)

\(x-3=-1\Rightarrow x=2\)

\(x-3=1\Rightarrow x=4\)

\(x-3=2\Rightarrow x=5\)

Vậy .....................

12 tháng 12 2017

1/ \(A=3\left|2x-1\right|-5\)

Ta có: \(\left|2x-1\right|\ge0\)

\(\Rightarrow3\left|2x-1\right|\ge0\)

\(\Rightarrow3\left|2x-1\right|-5\ge-5\)

Để A nhỏ nhất thì \(3\left|2x-1\right|-5\)nhỏ nhất

Vậy \(Min_A=-5\)

31 tháng 3 2017

2.

a/\(A=5-I2x-1I\)

Ta thấy: \(I2x-1I\ge0,\forall x\)

nên\(5-I2x-1I\le5\)

\(A=5\)

\(\Leftrightarrow5-I2x-1I=5\)

\(\Leftrightarrow I2x-1I=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)

b/\(B=\frac{1}{Ix-2I+3}\)

Ta thấy : \(Ix-2I\ge0,\forall x\)

nên \(Ix-2I+3\ge3,\forall x\)

\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)

\(B=\frac{1}{3}\)

\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)

\(\Leftrightarrow Ix-2I+3=3\)

\(\Leftrightarrow Ix-2I=0\)

\(\Leftrightarrow x=2\)

Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)

17 tháng 10 2019

1. a) Ta có: M  = |x + 15/19| \(\ge\)\(\forall\)x

Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19

Vậy MinM = 0 <=> x = -15/19

b) Ta có: N = |x  - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x

Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7

Vậy MinN = -1/2 <=> x = 4/7

17 tháng 10 2019

2a) Ta có: P = -|5/3 - x|  \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3

Vậy MaxP = 0 <=> x = 5/3

b) Ta có: Q = 9 - |x - 1/10| \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10

Vậy MaxQ = 9 <=> x = 1/10