K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2015

a) để A có GTNN => /x-10/ có GTNN

mà /x-10/\(\ge0\) 

=>/x-10/ nhỏ nhất khi=0

=>/x-10/=0

=>x-10=0

=>x=10

vậy GTNN của A =1973

b)

để B đạt GTNN

=>/2x-6/ nhỏ nhất

mà /2x-6/\(\ge0\)

=>/2x-6/ nhỏ nhất =0

=>/2x-6/=0

=>2x-6=0

=>2x=6

=>x=3

vậy GTNN của B =1975

15 tháng 11 2015

1973 + |x - 10| nhỏ nhất

=> |x - 10| nhỏ nhất

Mà |x - 10| \(\ge\)0  nên | x - 10| = 0

x - 10 = 0 => x = 10

Vậy A = 1973 + 0 = 1973 tại x = 10    

B = |2x - 6| + 1975 nhỏ nhất 

=> |2x - 6| nhỏ nhất

Mà |2x - 6| \(\ge\)0 do đó |2x - 6| = 0

=> 2x - 6 = 0 => 2x = 6 ; x = 3

Vậy A = 0 + 1975 = 1975 tại x = 3

a/ Để A nhỏ nhất thì |x-7| là nhỏ nhất

=> |x-7| = 0 

Vậy GTNN của A là : 0-1= -1 

12 tháng 7 2018

\(a,A=4+\left|x-\frac{2}{5}\right|\)

Có \(\left|x-\frac{2}{5}\right|\ge0\)

\(\Rightarrow A\ge4+0=4\)

Dấu "=" xảy ra khi \(x-\frac{2}{5}=0\Leftrightarrow x=\frac{2}{5}\)

Vậy Min A = 4 \(\Leftrightarrow x=\frac{2}{5}\)

19 tháng 1 2017

Bắt quả tang dũng nhá!~

8 tháng 4 2023

A = \(\dfrac{2x-1}{x+2}\) 

a, A là phân số ⇔ \(x\) + 2  # 0  ⇒ \(x\) # -2

b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2 

                                          ⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2

                                         ⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2

                                         ⇒ 5 ⋮ \(x\) + 2

                            ⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}

                            ⇒  \(x\)   \(\in\) { -7; -3; -1; 3}

c, A = \(\dfrac{2x-1}{x+2}\) 

  A = 2 - \(\dfrac{5}{x+2}\)

Với \(x\) \(\in\) Z và \(x\) < -3 ta có

                     \(x\) + 2 < - 3 + 2 = -1

              ⇒  \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\)  = -5  ⇒ - \(\dfrac{5}{x+2}\)<  5

              ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)

Với \(x\)  > -3;  \(x\) # - 2; \(x\in\)  Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1

            \(\dfrac{5}{x+2}\) > 0  ⇒  - \(\dfrac{5}{x+2}\)  < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)

Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)

Kết hợp (1); (2) và(3)  ta có A(max) = 7 ⇔ \(x\) = -3

 

                     

             

                                   

     

 

            

25 tháng 7 2021

a, \(A=2x^2+11\ge11\)

Dấu ''='' xảy ra khi x = 0 

Vậy GTNN A là 11 khi x = 0 

b, \(B=\left(x-3\right)^2+2021\ge2021\)

Dấu ''='' xảy ra khi x = 3

Vậy GTNN B là 2021 khi x = 3 

a) Ta có: \(2x^2\ge0\forall x\)

\(\Leftrightarrow2x^2+11\ge11\forall x\)

Dấu '=' xảy ra khi x=0

b) Ta có: \(\left(x-3\right)^2\le0\forall x\)

\(\Leftrightarrow\left(x-3\right)^2+2021\ge2021\forall x\)

Dấu '=' xảy ra khi x-3=0

hay x=3

28 tháng 4 2017

a, Ta có: \(\hept{\begin{cases}\left|x+2\right|\ge0\\\left|2y-10\right|\ge0\end{cases}\Rightarrow\left|x+2\right|+\left|2y-10\right|}\ge0\)

\(\Rightarrow\left|x+2\right|+\left|2y-10\right|+2014\ge2014\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left|x+2\right|=0\\\left|2y-10\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=5\end{cases}}}\)

Vậy SMin = 2014 tại x = -2 và y = 5

b, Đặt A = |x + 6| + |7 - x| 

Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\),ta có:

\(A=\left|x+6\right|+\left|7-x\right|\ge\left|x+6+7-x\right|=13\)

Dấu "=" xảy ra <=> \(\left(x+6\right)\left(7-x\right)\ge0\Leftrightarrow-6\le x\le7\)

Vậy AMin = 13 tại \(-6\le x\le7\)

28 tháng 4 2017

Để biểu thức S đạt giá trị nhỏ nhất => | x + 2 | và | 2y - 10 | có giá trị nhỏ nhất 

=> | x+2 | = 0 =>  x = 0 - 2 = -2 ; | 2y -10 | =0 => 2y = 0 - 10 = -10 => y = -10 : 2 = -5 

Vậy x = -2 ; y = -5 thì biểu thức S đạt giá trị nhỏ nhất 

2:

|x+4|>=0

=>-|x+4|<=0

=>B<=11

Dấu = xảy ra khi x=-4