K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A =|3x-4| + |5x-7| -x +2025

- Nếu x < \(\dfrac{4}{3}\):

\(\Rightarrow\) \(\left\{{}\begin{matrix}3x-4< 0\\5x-7< 0\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}\text{|}3x-4\text{|}=-3+4\\\text{|}5x-7\text{|}=-5x+7\end{matrix}\right.\) 

\(\Rightarrow\) \(A=-3x+4-5x+7-x+2025\) 

Vì x \(< \dfrac{4}{3}\) \(\Rightarrow\) \(9x< 12\) \(\Rightarrow\) \(-9x>-12\) 

\(\Rightarrow\) \(-9x+2036>2024\) 

\(\Rightarrow\) A \(>2024\) ( Loại)

Nếu \(\dfrac{4}{3}\) \(\le\) x \(< \dfrac{7}{5}\) 

\(\Rightarrow\) \(\left\{{}\begin{matrix}3x-4>0\\5x-7< 0\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}\text{|}3x-4\text{|}=3x-4\\\text{|}5x-7\text{|}=-5x+7\end{matrix}\right.\) 

\(\Rightarrow\) A= \(-3x-4-5x+7-x+2025\) 

       =   \(-3x+2028\) 

Ta có: \(\dfrac{4}{3}\) \(\le x\) \(\Rightarrow\) \(-3x\) \(>\dfrac{-21}{5}\) 

\(\Rightarrow\) 2024 \(\ge\) \(-3x+2028>\dfrac{10119}{5}\) ( loại)

Nếu x :

\(\ge\dfrac{7}{5}\\ \Rightarrow\left\{{}\begin{matrix}3x-4>0\\5x-7>0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}\text{|}3x-4\text{|}=3x-4\\\text{|}5x-7\text{|}=5x-7\end{matrix}\right.\\ \Rightarrow A=3x-4+5x-7-x+2025\) 

  \(=7x+2014\) 

Vì \(x\ge\dfrac{7}{5}\) \(\Rightarrow\) \(7x\ge\dfrac{49}{5}\) 

\(\Rightarrow\) \(7x+2014\) \(\ge\dfrac{19}{5}+2014=\dfrac{10119}{5}\) 

\(\Rightarrow\) A \(\ge\) \(\dfrac{10119}{5}\) (  t/m)

Vậy A đạt GTNN khi A bằng \(\dfrac{10119}{5}\)

Dấu "=" xảy ra khi  \(x=\dfrac{7}{5}\)

 

9 tháng 5 2022

`a)` Cho `3x+6=0`

`=>3x=-6`

=>x=-2`

Vậy nghiệm của đa thức là `x=-2`

`b)` Cho `2x^2-3x=0`

`=>x(2x-3)=0`

`@TH1:x=0`

`@TH2:2x-3=0=>2x=3=>x=3/2`

Vậy nghiệm của đa thức là `x=0` hoặc `x=3/2`

____________________________________________

Câu `2:`

Vì `(x+1)^2 >= 0 AA x`

`=>2(x+1)^2 >= 0 AA x`

`=>2(x+1)^2-5 >= -5 AA x`

   Hay `A >= -5 AA x`

Dấu "`=`" xảy ra khi `(x+1)^2=0=>x+1=0=>x=-1`

Vậy `GTN N` của `A` là `-5` khi `x=-1`

9 tháng 5 2022

Câu 1: 
  a, Cho 2x+6=0
             2x     = 0-6=-6
               x     = -6 :2=-3
Vậy đa thức trên có nghiệm là x=-3
b, Cho đa thức 2x2-3x=0
                         2xx-3x=0
                       x(2x-3x)=0
                    1,x=0
                    2,2x-3x=0
        x(2-3)=0
        -x      =0
        =>x=0
Vậy đa thức tên có nghiệm là x=0
Câu 2:
Để đa thức A có giá trị nhỏ nhất thì 2(x+1)2-5 phải bé nhất; 
                                                   mà 2(x-1)2≥0
Dấu bằng chỉ xuất hiện khi và chỉ khi :
2(x-1)2=0
  (x-1)2=0:2=0=02
=>x-1=0
    x   =0+1=1
=> A = 2(1-1)2-5
     A =2.0-5
     A 0-5 =-5
Vậy A có giá trị bé nhất là -5 với x= 1
  

23 tháng 4 2022

\(a.A=\left(x-2\right)^2+\left(y+1\right)^2+1\ge1\forall x;y\) . " = " \(\Leftrightarrow x=2;y=-1\) 

b.\(B=7-\left(x+3\right)^2\le7\forall x\)  " = " \(\Leftrightarrow x=-3\)

c.\(C=\left|2x-3\right|-13\ge-13\forall x\)  " = " \(\Leftrightarrow x=\dfrac{3}{2}\)

d.\(D=11-\left|2x-13\right|\le11\forall x\)  " = " \(\Leftrightarrow x=\dfrac{13}{2}\)

23 tháng 4 2022

:o

3 tháng 5 2021

\(A=x^2-4x+10=x^2-4x+4+6=\left(x-2\right)^2+6\ge6\)

Vậy GTNN A là 6 khi x - 2 = 0 <=> x = 2 

\(B=\left(1-x\right)\left(3x-4\right)=3x-4-3x^2+4x=-3x^2+7x-4\)

\(=-3\left(x^2-\frac{7}{3}x+\frac{4}{3}\right)=-3\left(x^2-2.\frac{7}{6}x+\frac{49}{36}-\frac{1}{36}\right)=-3\left(x-\frac{7}{6}\right)^2+\frac{1}{12}\ge\frac{1}{12}\)

\(=3\left(x-\frac{7}{6}\right)^2-\frac{1}{12}\le-\frac{1}{12}\)Vậy GTLN B là -1/12 khi x = 7/6 

3 tháng 5 2021

\(C=3x^2-9x+5=3\left(x^2-3x+\frac{5}{3}\right)=3\left(x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{7}{12}\right)\)

\(=3\left(x-\frac{3}{2}\right)^2-\frac{7}{4}\ge-\frac{7}{4}\)Vậy GTNN C là -7/4 khi x = 3/2 

\(D=-2x^2+5x+2=-2\left(x^2-\frac{5}{2}x-1\right)=-2\left(x^2-2.\frac{5}{4}x+\frac{25}{16}-\frac{41}{16}\right)\)

\(=-2\left(x-\frac{5}{4}\right)^2+\frac{21}{8}\le\frac{21}{8}\)Vậy GTLN D là 21/8 khi x = 5/4 

26 tháng 12 2021

C

18 tháng 10 2019

p/s : bài GTNN hay GTLN mk nghĩ bn nên tham khảo những bài ... tương tự 

hk tốt 

a, Thay x = 3 và y = -6 vào bt ta đc

\(5.3-4.\left(-6\right)=15-\left(-24\right)=39\\ b,\\ 2.\left(-2\right)^2-5.4=8-20=\left(-12\right)\\ c,\\ 5.\left(-1\right)^2+3.\left(-1\right)-1=5+\left(-3\right)-1=1\)

9 tháng 2 2022

a) Thay x=3; y=-6

\(5x-4y=5.3-4.\left(-6\right)=15+24=39\)

b) Thay x=-2; y=4

\(2x^4-5y=2.\left(-2\right)^4-5.4=32-20=12\)

c, Thay x=0

\(5x^2+3x-1=5.0+3.0-1=-1\)

+) x=-1

\(5x^2+3x-1=5.\left(-1\right)^2+3.\left(-1\right)-1=5-3-1=1\)

+) \(x=\dfrac{1}{3}\)

\(5x^2+3x-1=5.\left(\dfrac{1}{3}\right)^2+3.\dfrac{1}{3}-1\)

\(=\dfrac{5}{9}+1-1=\dfrac{5}{9}\)

28 tháng 10 2023

a: \(\left(x-2\right)^2>=0\)

\(\left|y-x\right|>=0\)

Do đó: \(\left(x-2\right)^2+\left|y-x\right|>=0\forall x,y\)

=>\(\left(x-2\right)^2+\left|y-x\right|+3>=3\forall x,y\)

=>A>=3 với mọi x,y

Dấu = xảy ra khi x-2=0 và y-x=0

=>x=2=y

b: \(\left|x+5\right|>=0\)

=>\(\left|x+5\right|+5>=5\)

=>B>=5 với mọi x

Dấu = xảy ra khi x+5=0

=>x=-5

c: \(\left|x-2010\right|>=0\)

=>\(-\left|x-2010\right|< =0\)

=>\(-\left|x-2010\right|+2012< =2012\)

=>\(C=\dfrac{2011}{2012-\left|x-2010\right|}>=\dfrac{2011}{2012}\forall x\)

Dấu = xảy ra khi x=2010

28 tháng 10 2023

a) Ta có:

\(A=\left(x-2\right)^2+\left|y-x\right|+3\)

Mà: \(\left\{{}\begin{matrix}\left(x-2\right)^2\ge0\\\left|y-x\right|\ge0\end{matrix}\right.\)

\(\Rightarrow A=\left(x-2\right)^2+\left|y-x\right|+3\ge3\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}x-2=0\\y-x=0\end{matrix}\right.\)

\(\Rightarrow x=y=2\)

Vậy: \(A_{min}=3\Leftrightarrow x=y=2\) 

b) Ta có:

\(B=\left|x+5\right|+5\)

Mà: \(\left|x+5\right|\ge0\)

\(\Rightarrow B=\left|x+5\right|+5\ge5\)

Dấu "=" xảy ra:

\(x+5=0\Rightarrow x=-5\)

Vậy: \(B_{min}=5\Leftrightarrow x=-5\)

c) Ta có:

\(C=\dfrac{2011}{2012-\left|x-2010\right|}\)

Mà: \(\left|x-2010\right|\ge0\)

\(\Rightarrow C=\dfrac{2011}{2012-\left|x-2010\right|}\ge\dfrac{2011}{2012}\)

Dấu "=" xảy ra khi:

\(x-2010=0\Rightarrow x=2010\)

Vậy: \(C_{min}=\dfrac{2011}{2012}\Leftrightarrow x=2010\)