Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left(2x-4\right)^4\ge0\forall x\)
\(\Leftrightarrow\left(2x-4\right)^4+5\ge5\forall x\)
Dấu '=' xảy ra khi 2x-4=0
\(\Leftrightarrow2x=4\)
hay x=2
Vậy: Giá trị nhỏ nhất của biểu thức \(M=\left(2x-4\right)^2+5\) là 5 khi x=2
b) Ta có: \(\left|x+2\right|\ge0\forall x\)
\(\Leftrightarrow-\left|x+2\right|\le0\forall x\)
\(\Leftrightarrow\left|x+2\right|+10\le10\forall x\)
Dấu '=' xảy ra khi x+2=0
hay x=-2
Vậy: Giá trị lớn nhất của biểu thức \(N=10-\left|x+2\right|\) là 10 khi x=-2
\(C=\left(x-5\right)^2+10\)
Ta có \(\left(x-5\right)^2\ge0\)
C đạt giá trị nhỏ nhất khi \(\left(x-5\right)^2+10\ge10\)
Dấu "=" xảy ra⇔ \(\left(x-5\right)^2=0\)
⇔x-5=0
⇔x=5
Đáp án cần chọn là: C
A=|x-2| + |y+5| -10
Ta có: |x−2|≥0 với mọi x∈Z và |y+5|≥0 với mọi y∈Z
Suy ra |x−2|+|y+5|≥0 với mọi x,y∈Z
Suy ra |x−2|+|y+5|−15≥−15 với mọi x,y∈Z hay A≥−15 với mọi x,y∈Z
Dấu bằng xảy ra khi |x−2|=0 và |y+5|=0 suy ra x=2 và y=−5 .
Vậy giá trị nhỏ nhất của của A bằng −15 khi x=2 và y=−5.
A=(x^2-25)^2+(y+5)^2-10>=-10
Dấu = xảy ra khi y=-5 và \(x\in\left\{5;-5\right\}\)
Ta có :
\(\left(x-1\right)^2\ge0\)
\(\Rightarrow\)\(2018-\left(x-1\right)^2\le2018\)
Dấu "=" xảy ra khi và chỉ khi \(\left(x-1\right)^2=1\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=1\\x-1=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}}\)
Vậy GTLN của biểu thức \(2018-\left(x-1\right)^2\) là \(2018\) khi \(x=0\) hoặc \(x=2\)
Chúc bạn học tốt ~
Ta có :
\(\left|x-5\right|\ge5\)
\(\Rightarrow\)\(\left|x-5\right|+120\ge120\)
Dấu "=" xảy ra khi và chỉ khi \(\left|x-5\right|=0\)
\(\Leftrightarrow\)\(x-5=0\)
\(\Leftrightarrow\)\(x=5\)
Vậy GTNN của biểu thức \(\left|x-5\right|+120\) là \(120\) khi \(x=5\)
Chúc bạn học tốt ~
Vì (x-5)^2 \(\ge0\forall x\)
=> (x-5)^2-10\(\ge-10\forall x\)
Dấu = xảy ra
<=>x-5 = 0
<=> x= 5
Vậy ........