\(^2\)+10

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2018

Vì \(\left|x-4\right|\ge0\left(\forall x\right)\)

Và \(\left(y-1\right)^2\ge0\left(\forall y\right)\)

\(\Rightarrow\left|x-4\right|+\left(y-1\right)^2+10\ge10\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left|x-4\right|=0\\\left(y-1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-4=0\\y-1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=4\\y=1\end{cases}}}\)

Vậy GTNN của biểu thức bằng 10 khi và chỉ khi x = 4 và y = 1

21 tháng 7 2018

Ta có : |x-4|+ (y-1)2 +10 

Vì |x-4| \(\ge\)\(\forall\)x

    (y-1)2 \(\ge\)0\(\forall\)y

<=> |x-4|+ ( y-1)2 \(\ge\)\(\forall\)x ; y 

<=> |x-4|+ ( y-1)2 +10 \(\ge\)0+10

<=> |x-4|+ ( y-1)2 +10 \(\ge\)10

Vậy GTNN của biểu thức là 10 khi \(\hept{\begin{cases}\left|x-4\right|=0\\\left(y-1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-4=0\\y-1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=4\\y=1\end{cases}}}\)

15 tháng 4 2019

a) \(\begin{cases}\left(x+2\right)^2\ge0\\\left(y-\frac{1}{5}\right)^2\ge0\end{cases}\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2\ge0\)

\(\Leftrightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge0-10=-10\)hay \(C\ge-10\)

Dấu "=" xảy ra khi:

\(\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y-\frac{1}{5}\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+2=0\\y-\frac{1}{5}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-2\\y=\frac{1}{5}\end{cases}}}\)

Vậy GTNN C là -10 khi \(\hept{\begin{cases}x=-2\\y=\frac{1}{5}\end{cases}.}\)

b)\(\left(2x-3\right)^2\ge0\Rightarrow\left(2x-3\right)^2+5\ge0+5=5\)

\(\Rightarrow\frac{4}{\left(2x-3\right)^2-5}\le\frac{4}{5}\Leftrightarrow D\le\frac{4}{5}\)

Dấu "=" xảy ra khi:

\(\left(2x-3\right)^2=0\Rightarrow2x-3=0\Rightarrow2x=3\Rightarrow x=\frac{3}{2}\)

Vậy GTLN D là \(\frac{4}{5}\)khi \(x=\frac{3}{2}.\)

17 tháng 4 2019

thank bạn nha

12 tháng 12 2017

1/ \(A=3\left|2x-1\right|-5\)

Ta có: \(\left|2x-1\right|\ge0\)

\(\Rightarrow3\left|2x-1\right|\ge0\)

\(\Rightarrow3\left|2x-1\right|-5\ge-5\)

Để A nhỏ nhất thì \(3\left|2x-1\right|-5\)nhỏ nhất

Vậy \(Min_A=-5\)

8 tháng 7 2016

a. A = 5.(x - 2)2 + 1

Ta có: (x - 2)\(\ge\)0 => 5.(x - 2)2 \(\ge\)0 => 5.(x - 2)2 + 1 \(\ge\)1

Do đó A có GTNN là 1

<=> x - 2 = 0

<=> x = 2

b. B = 4 - (1/2 - x)2

Ta có: (1/2 - x)2 \(\ge\)0

=> 4 - (1/2 - x)2 \(\le\)4

Do đó B có GTLN là 4

<=> 1/2 - x = 0

<=> x = 1/2

9 tháng 7 2020

Ta có :

\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

\(\Rightarrow x^2+y^2\ge2xy\Leftrightarrow\left(x-y\right)^2\ge0\)

Áp dụng ta được : 

\(x^4+y^4\ge\frac{\left(x^2+y^2\right)^2}{2}\ge\frac{\left(\frac{\left(x+y\right)^2}{2}\right)^2}{2}=\frac{\left(\frac{1}{2}\right)^2}{2}=\frac{\frac{1}{4}}{2}=\frac{1}{8}\)

Vậy \(M_{min}=\frac{1}{8}\Leftrightarrow x=y=\frac{1}{2}\)

30 tháng 11 2018

\(A=\frac{3}{\left(x+2\right)^2+4};\left(x+2\right)^2\in N\)

\(\Rightarrow A_{max}\Leftrightarrow\left(x+2\right)^2=0\Leftrightarrow\left(x+2\right)^2+4=4\)

\(\Rightarrow A_{max}=\frac{3}{4}\)

b, \(B=\left(x+1\right)^2+\left(y+3\right)^2+1\)

Mặt khác: \(\left(x+1\right)^2;\left(y+3\right)^2\in N\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2\ge0\)

\(\Rightarrow B_{min}\Leftrightarrow\left(x+1\right)^2+\left(y+3\right)^2=0\Rightarrow B_{min}=1\)

30 tháng 11 2018

\(A=\frac{3}{\left(x+2\right)^2+4}\)

Để A max

=>(x+2)^2+4 min

\(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+4\ge4\)

Vậy Min = 4 <=>x=-2

Vậy Max A = 3/4 <=> x=-2

\(b,B=\left(x+1\right)^2+\left(y+3\right)^2+1\)

Có \(\left(x+1\right)^2\ge0;\left(y+3\right)^2\ge0\)

\(\Rightarrow B\ge0+0+1=1\)

Vậy MinB = 1<=>x=-1;y=-3

11 tháng 2 2017

1 )Vì \(\left(x+2\right)^2\ge0;\left(y-3\right)^2\ge0\)

\(\Rightarrow\left(x+2\right)^2+\left(y-3\right)^2\ge0\)

\(\Rightarrow\left(x+2\right)^2+\left(y-3\right)^2+1\ge1\)

Dấu "=: xảy ra <=> \(\orbr{\begin{cases}\left(x+2\right)^2=0\\\left(y-3\right)^2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\y=3\end{cases}}}\)

Vậy ........

2 ) \(\frac{1}{\left(x-2\right)^2+2}\ge\frac{1}{2}\)

Dấu "=" xảy ra <=> x = 2

Vậy ..........