\(H=2019-\left|x-y\right|^{2018}-\left|2x+1\right|-...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2020

F = | 2x - 2 | + | 2x - 2003 |

F = | 2x - 2 | + | -( 2x - 2003 ) |

F = | 2x - 2 | + | 2003 - 2x |

Áp dụng bất đẳng thức | a | + | b | ≥ | a + b | ta có :

F = | 2x - 2 | + | 2003 - 2x | ≥ | 2x - 2 + 2003 - 2x | = | 2001 | = 2001

Đẳng thức xảy ra khi ab ≥ 0

=> ( 2x - 2 )( 2003 - 2x ) ≥ 0

Xét hai trường hợp :

1/ \(\hept{\begin{cases}2x-2\ge0\\2003-2x\ge0\end{cases}}\Rightarrow\hept{\begin{cases}2x\ge2\\-2x\ge-2003\end{cases}}\Rightarrow\hept{\begin{cases}x\ge1\\x\le\frac{2003}{2}\end{cases}\Rightarrow}1\le x\le\frac{2003}{2}\)

2/ \(\hept{\begin{cases}2x-2\le0\\2003-2x\le0\end{cases}}\Rightarrow\hept{\begin{cases}2x\le2\\-2x\le-2003\end{cases}}\Rightarrow\hept{\begin{cases}x\le1\\x\ge\frac{2003}{2}\end{cases}}\)( loại )

Vậy MinF = 2001 <=> \(1\le x\le\frac{2003}{2}\)

G = | 2x - 3 | + 1/2| 4x - 1 |

G = | 2x - 3 | + | 2x - 1/2 |

G = | -( 2x - 3 ) | + | 2x - 1/2 |

G = | 3 - 2x | + | 2x - 1/2 |

Áp dụng bất đẳng thức | a | + | b | ≥ | a + b | ta có :

G = | 3 - 2x | + | 2x - 1/2 | ≥ | 3 - 2x + 2x - 1/2 | = | 5/2 | = 5/2

Đẳng thức xảy ra khi ab ≥ 0 

=> ( 3 - 2x )( 2x - 1/2 ) ≥ 0

Xét 2 trường hợp :

1/ \(\hept{\begin{cases}3-2x\ge0\\2x-\frac{1}{2}\ge0\end{cases}}\Rightarrow\hept{\begin{cases}-2x\ge-3\\2x\ge\frac{1}{2}\end{cases}\Rightarrow}\hept{\begin{cases}x\le\frac{3}{2}\\x\ge\frac{1}{4}\end{cases}}\Rightarrow\frac{1}{4}\le x\le\frac{3}{2}\)

2/ \(\hept{\begin{cases}3-2x\le0\\2x-\frac{1}{2}\le0\end{cases}}\Rightarrow\hept{\begin{cases}-2x\le-3\\2x\le\frac{1}{2}\end{cases}\Rightarrow}\hept{\begin{cases}x\ge\frac{3}{2}\\x\le\frac{1}{4}\end{cases}}\)( loại )

=> MinG = 5/2 <=> \(\frac{1}{4}\le x\le\frac{3}{2}\)

H = | x - 2018 | + | x - 2019 | + | x - 2020 | 

H = | x - 2019 | + [ | x - 2018 | + | x - 2020 | ]

H = | x - 2019 | + [ x - 2018 | + | -( x - 2020 ) | ]

H = | x - 2019 | + [ | x - 2018 | + | 2020 - x | ]

Ta có : | x - 2019 | ≥ 0 ∀ x

| x - 2018 | + | 2020 - x | ≥ | x - 2018 + 2020 - x | = | 2 | = 2 ( BĐT | a | + | b | ≥ | a + b | )

=> | x - 2019 | + [ | x - 2018 | + | 2020 - x | ] ≥ 2

Đẳng thức xảy ra <=> \(\hept{\begin{cases}\left|x-2019\right|=0\\\left(x-2018\right)\left(2020-x\right)\ge0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=2019\\2018\le x\le2020\end{cases}}\)

=> x = 2019

=> MinH = 2 <=> x = 2019

5 tháng 6 2016

Đáy lớn là

26 + 8 = 34 M

chIỀU CAO là

26 - 6 = 20 m

Diện tích thửa ruộng là

{ 34 + 26 } x 20 : 2 = 800 m2

Đáp số 800 m2

5 tháng 6 2016

1.Để H đạt GTLN

=>|8x+16|+1 đạt giá trị dương nhỏ nhất

=>|8x+16|+1=1

=>MaxH=1

Dấu "=" xảy ra khi x=-2

Vậy...

9 tháng 11 2018

\(\left(x+6\right)^{x+2}.\left[1-\left(x+6\right)^{10}\right]=0\)

\(\Rightarrow\orbr{\begin{cases}\left(x+6\right)^{x+2}=0\\1-\left(x+6\right)^{10}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x+6=0\\x+6=1\end{cases}hoac}x+6=-1\)

\(\Rightarrow\orbr{\begin{cases}x=-6\\x=-5\end{cases}hoac}x=-7\)

vậy x=-5, x=-6 hay x=-7

2, ta có:

\(\left|4x+2\right|\ge0\)

\(\left(y+2\right)^{2018}\ge0\)

\(\Rightarrow\left|4x+2\right|+\left(y+2\right)^{2018}+2019\ge2019\)

dấu "=" xảy ra khi \(\hept{\begin{cases}\left|4x+2\right|=0\\\left(y+2\right)^{2018}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=-2\end{cases}}\)

vậy GTNN của p = 2019  khi và chỉ khi \(x=-\frac{1}{2},y=-2\)

10 tháng 4 2019

1.Ta có (x-y)^2 >=0

        (x-y)(x-y) >=0

        x^2+y^2-2xy>=0

       (x^2+y^2+2xy)-4xy>=0 

      (x+y)^2 >=4xy mà x+y=1 

         4xy <=1

   xy<=1/4

dấu = xảy ra <=> (x-y)^2=0

                     <=>x-y=0 <=> x=y mà x+y=1 

                         <=> x=y=0,5

GTLn của bt là 1/4 tại x=y=0,5

2. (* chú ý nè : Tổng các hệ số của 1 đa thức sau khi bỏ dấu ngoặc là giá trị của đa thức đó tại biến =0)

Bài này bạn chỉ cần thay x=1 vào rồi tính thui

Đáp số là: 8^2019

3.f(-2)=4a-2b+c

 f(3)=9a+3b+c

=> f(-2)+f(3) =13a+b+2c=0

=> f(-2)=-f(3)

=> f(-2). f(3)= -f(3) .f(3)=-[f(3)]^2

Mà -[f(3)]^2<=0 với mọi a,b,c

=>  f(-2). f(3)<=0 

T i ck cho mình ủng hộ nha

12 tháng 12 2017

1/ \(A=3\left|2x-1\right|-5\)

Ta có: \(\left|2x-1\right|\ge0\)

\(\Rightarrow3\left|2x-1\right|\ge0\)

\(\Rightarrow3\left|2x-1\right|-5\ge-5\)

Để A nhỏ nhất thì \(3\left|2x-1\right|-5\)nhỏ nhất

Vậy \(Min_A=-5\)

21 tháng 5 2020

Có: \(|x-1|\ge0\)

      \(|x-2|\ge0\)

     .................

      \(|x-2019|\ge0\)

=>  \(A\ge0\)

   Vậy giá trị nhỏ nhất của A là 0

21 tháng 5 2020

Cám ơn bạn nhiều <3

AH
Akai Haruma
Giáo viên
24 tháng 8 2020

$H=|x-2018|+|x-2019|+|x-2020|$

$=|x-2018|+|x-2020|+|x-2019|=|x-2018|+|2020-x|+|x-2019|$

Ta có:

$|x-2018|+|2020-x|\geq |x-2018+2020-x|=2$

$|x-2019|\geq 0$ với mọi $x$

$\Rightarrow H\geq 2$

Vậy $H_{\min}=2$. Dấu "=" xảy ra khi \(\left\{\begin{matrix} (x-2018)(2020-x)\geq 0\\ x-2019=0\end{matrix}\right.\Leftrightarrow x=2019\)

AH
Akai Haruma
Giáo viên
24 tháng 8 2020

Lời giải:

Bạn áp dụng BĐT sau:

$|a|+|b|\geq |a+b|$. Dấu "=" xảy ra khi $ab\geq 0$

Ta có:

\(F=|2x-2|+|2x-2003|=|2x-2|+|2003-2x|\geq |2x-2+2003-2x|=2001\)

Vậy $F_{\min}=2001$. Dấu "=" xảy ra khi $(2x-2)(2003-2x)\geq 0$

$\Leftrightarrow 1\leq x\leq \frac{2003}{2}$

---------------

\(G=|2x-3|+\frac{1}{2}|4x-1|=|2x-3|+|2x-\frac{1}{2}|=|3-2x|+|2x-\frac{1}{2}|\geq |3-2x+2x-\frac{1}{2}|\)

\(=\frac{5}{2}\)

Vậy $G_{\min}=\frac{5}{2}$. Dấu "=" xảy ra khi $(3-2x)(2x-\frac{1}{2})\geq 0$

$\Leftrightarrow \frac{1}{4}\leq x\leq \frac{3}{2}$