K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Amin=2 nha bn Cá lak trong violympic

2 tháng 8 2020

A = x2 - x + 4 = x2 - x + 1/4 + 15/4 = ( x - 1/2 )2 + 15/4

( x - 1/2 )2 ≥ 0 ∀ x => ( x - 1/2 )2 + 15/4  ≥ 15/4

Đẳng thức xảy ra <=> x - 1/2 = 0 => x = 1/2

Vậy AMin = 15/4 , đạt được khi x = 1/2

2 tháng 8 2020

Bài làm:

Ta có: \(x^2-x+4=\left(x^2-x+\frac{1}{4}\right)+\frac{15}{4}=\left(x-\frac{1}{2}\right)^2+\frac{15}{4}\)

\(\ge\frac{15}{4}\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(x=\frac{1}{2}\)

Vậy Min(A) = 15/4 khi x = 1/2

21 tháng 2 2020

a) Ta có : A = - 15 - |7 - x| = -(15 + |7 - x|) 

vì \(\left|7-x\right|\ge0\forall x\Rightarrow15+\left|7-x\right|\ge15\Rightarrow-\left(15+\left|7-x\right|\right)\le-15\)

Dấu"=" xảy ra <=> 7 - x = 0

=> x = 7

Vậy GTLN của A là - 15 khi x = 7

b) Ta có : \(\hept{\begin{cases}\left|x+2,5\right|\ge0\forall x\\\left(y-1\right)^4\ge0\forall y\end{cases}\Rightarrow\left|x+2,5\right|+\left(y-1\right)^4\ge0}\)

=> \(\left|x+2,5\right|+\left(y-1\right)^4-6\ge-6\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+2,5=0\\y-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=-2,5\\y=1\end{cases}}}\)

Vậy GTNN của B là - 6 khi \(\hept{\begin{cases}x=-2,5\\y=1\end{cases}}\)

21 tháng 2 2020

a) Vì \(\left|7-x\right|\ge0\forall x\)\(\Rightarrow-15-\left|7-x\right|\le-15\forall x\)

hay \(A\le-15\)

Dấu " = " xảy ra \(\Leftrightarrow7-x=0\)\(\Leftrightarrow x=7\)

Vậy \(maxA=-15\Leftrightarrow x=7\)

b) Vì \(\hept{\begin{cases}\left|x+2,5\right|\ge0\forall x\\\left(y-1\right)^4\ge0\forall y\end{cases}}\)\(\Rightarrow\left|x+2,5\right|+\left(y-1\right)^4\ge0\forall x,y\)

\(\Rightarrow\left|x+2,5\right|+\left|y-1\right|^4-6\ge-6\forall x,y\)

hay \(B\ge-6\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x+2,5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2,5\\y=1\end{cases}}\)

Vậy \(minB=-6\Leftrightarrow\hept{\begin{cases}x=-2,5\\y=1\end{cases}}\)

18 tháng 8 2019

\(A=\left(x+\frac{4}{7}\right)^{24}+\left(-\frac{1}{2}\right)\)

\(\text{Vì }\left(x+\frac{4}{7}\right)^2\ge0\)

\(\text{nên }\left(x+\frac{4}{7}\right)^{24}+\left(-\frac{1}{2}\right)\ge-\frac{1}{2}\)

\(\text{Hay }A\ge-\frac{1}{2}\)

\(\text{Vậy }GTNN_A=-\frac{1}{2}\text{,dấu bằng xảy ra khi x = }-\frac{4}{7}\)

18 tháng 8 2019

A=(x+4/7)24+(-1/2)

Vì (x+4/7)2_> 0

nên (x+4/7)24+(-1/2)_> -1/2

Hay A_> -1/2

Vật GTNN =-1/2, dấu = xảy ra khi x= -4/7

Các bạn tk cho Phát nha, tại mk làm sau, vs bài cx ik chang,

30 tháng 11 2018

\(A=\frac{3}{\left(x+2\right)^2+4};\left(x+2\right)^2\in N\)

\(\Rightarrow A_{max}\Leftrightarrow\left(x+2\right)^2=0\Leftrightarrow\left(x+2\right)^2+4=4\)

\(\Rightarrow A_{max}=\frac{3}{4}\)

b, \(B=\left(x+1\right)^2+\left(y+3\right)^2+1\)

Mặt khác: \(\left(x+1\right)^2;\left(y+3\right)^2\in N\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2\ge0\)

\(\Rightarrow B_{min}\Leftrightarrow\left(x+1\right)^2+\left(y+3\right)^2=0\Rightarrow B_{min}=1\)

30 tháng 11 2018

\(A=\frac{3}{\left(x+2\right)^2+4}\)

Để A max

=>(x+2)^2+4 min

\(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+4\ge4\)

Vậy Min = 4 <=>x=-2

Vậy Max A = 3/4 <=> x=-2

\(b,B=\left(x+1\right)^2+\left(y+3\right)^2+1\)

Có \(\left(x+1\right)^2\ge0;\left(y+3\right)^2\ge0\)

\(\Rightarrow B\ge0+0+1=1\)

Vậy MinB = 1<=>x=-1;y=-3

24 tháng 9 2015

Ta có -|1,5 - x| < 0

=> 19,5 - |1,5 - x| < 19,5

Vậy GTLN của Q là 19,5 <=> 1,5 - x = 0 <=> x = 1,5

13 tháng 2 2017

gtnn mà

AH
Akai Haruma
Giáo viên
28 tháng 6 2024

Biểu thức A không có min/ max

Biểu thức B là sao hả bạn?