Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = |x - 2001| + |x - 1|
Có |x - 1| = |1 - x|
=> A = |x - 2001| + |1 - x|
=> A > |x - 2001 + 1 - x| = 2000
Dấu "=" xảy ra <=> (x - 2001)(1 - x) > 0
<=> x - 2001 và 1 - x cùng dấu
TH1: x - 2001 > 0 và 1 - x > 0
=> x > 2001 và x < 1 (vô lí
TH2: x - 2001 < 0 và 1 - x < 0
=> x < 2001 và x > 1
=> 1 < x < 2001 (TM)
KL: Amin = 2000 <=> 1 < x < 2001
Giải:
Dễ thấy: \(\left|x-1\right|=\left|1-x\right|\)
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(A=\left|x-2001\right|+\left|1-x\right|\) \(\ge\left|x-2001+1-x\right|=2000\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-2001\ge0\\1-x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le2001\\x\ge1\end{matrix}\right.\)
\(\Leftrightarrow1\le x\le2001\)
Vậy \(A_{min}=2000\Leftrightarrow1\le x\le2001\)
A =/x-2001/ + /x-1/
Với x<1 ta có A = 2001 - x +1 -x =2002-2x. Khi đó A>2002
Với 1<= x <= 2001 ta có A = 2001-x +x-1 = 2000
Với x>2001ta có A=x-2001+x -1 = 2x -2000. Khi đó A> 2.2001 - 2000 =2002.
Vậy minA = 2000 khi 1<= x <= 2001.
k) Vì \(\left|4x-3\right|\ge0\left(\forall x\right);\left|5y+7,5\right|\ge0\left(\forall y\right)\)
\(\Rightarrow C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|4x-3\right|=0\\\left|5y+7,5\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}4x-3=0\\5y+7,5=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{-3}{2}\end{cases}}}\)
Vậy CMin = 17,5 khi và chỉ khi x = 3/4 và y = -3/2
n) Ta có:
\(M=\left|x-2002\right|+\left|x-2001\right|=\left|x-2002\right|+\left|2001-x\right|\ge\left|x-2002+2001-x\right|=1\)
Dấu "=" xảy ra khi \(\left(x-2002\right)\left(2001-x\right)\ge0\)
<=> x lớn hơn hoặc bằng 2002
Hoặc x bé hơn hoặc bằng 2001
Vậy MMin =1
Tìm GTNN
Ta có: A = |x - 1| + |x - 4|
=> A = |x - 1| + |4 - x| \(\ge\)|x - 1 + 4 - x| = |3| = 3
=> A \(\ge\)3
Dấu "=" xảy ra <=> (x - 1)(x - 4) \(\ge\)0
<=> \(1\le x\le4\)
Vậy Min A = 3 <=> \(1\le x\le4\)
Tìm GTLN
Ta có: -|x + 2| \(\le\)0 \(\forall\)x
hay A \(\le\)0 \(\forall\)x
Dấu "=" xảy ra <=> x + 2 = 0 <=> x = -2
Vậy Max A = 0 <=> x = -2
a, Vì \(\left|x-\frac{2}{3}\right|\ge0\Rightarrow2\left|x-\frac{2}{3}\right|\ge0\Rightarrow B=2\left|x-\frac{2}{3}\right|-1\ge-1\)
Dấu "=" xảy ra khi \(2\left|x-\frac{2}{3}\right|=0\Rightarrow x=\frac{2}{3}\)
Vậy MinB = -1 khi \(x=\frac{2}{3}\)
b, Vì \(\left|3x+8,4\right|\ge0\Rightarrow D=\left|3x-8,4\right|-14,2\ge-14,2\)
Dấu "=" xảy ra khi |3x - 8,4| = 0 => x = 2,8
Vậy MinD = -14,2 khi x = 2,8
c, Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(F=\left|x-2002\right|+\left|x-2001\right|=\left|2002-x\right|+\left|x-2001\right|\ge\left|2002-x+x-2001\right|=1\)
Dấu "=" xảy ra khi \(\left(2002-x\right)\left(x-2001\right)\ge0\Leftrightarrow-2001\le x\le2002\)
Vậy MinF = 1 khi \(-2001\le x\le2002\)
ta có:
\(A=\left|x-2001\right|+\left|x-1\right|=\left|x-2001\right|+\left|-x+1\right|\)
\(\Rightarrow A=\left|x-2001\right|+\left|-x+1\right|\ge\left|x-2001-x+1\right|=\left|-2000\right|=2000\)
dấu "=" xảy ra khi \(\left(x-2001\right).\left(-x+1\right)\ge0\)
\(\Rightarrow1\le x\le2001\)
Vậy GTNN của A=2000 khi 1<x<2001