K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2020

Đề này sửa dấu + thành trừ ở cái chỗ \(x^2-y^2\) nhé ! Còn thiếu dữ kiện của x,y là : \(x>1,y>1\) :

Ta có : \(P=\frac{\left(x^3+y^3\right)-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\)

\(=\frac{\left(x^3-x^2\right)+\left(y^3-y^2\right)}{\left(x-1\right)\left(y-1\right)}\)

\(=\frac{x^2\left(x-1\right)}{\left(x-1\right)\left(y-1\right)}+\frac{y^2\left(y-1\right)}{\left(x-1\right)\left(y-1\right)}\)

\(=\frac{x^2}{y-1}+\frac{y^2}{x-1}\) \(\ge\frac{2xy}{\sqrt{\left(y-1\right)\left(x-1\right)}}\) ( Cô - si )

Lại có : \(\sqrt{\left(y-1\right)}=\sqrt{1\cdot\left(y-1\right)}\le\frac{1+y-1}{2}=\frac{y}{2}\)

Tương tự : \(\sqrt{x-1}\le\frac{x}{2}\)

\(\Rightarrow\sqrt{\left(y-1\right)\left(x-1\right)}\le\frac{xy}{4}\)

Khi đó : \(\frac{2xy}{\sqrt{\left(y-1\right)\left(x-1\right)}}\ge\frac{2xy}{\frac{xy}{4}}=8\)

hay : \(P\ge8\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{x^2}{y-1}=\frac{y^2}{x-1}\\y-1=1,x-1=1\end{cases}}\) \(\Leftrightarrow x=y=2\)

Vậy : \(min\) \(P=8\) tại \(x=y=2\)

7 tháng 3 2020

sorry bạn

8 tháng 6 2016

\(P=\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{2xy}{\sqrt{\left(x-1\right)\left(y-1\right)}}\)

\(\sqrt{x-1}=\sqrt{\left(x-1\right).1}\le\frac{x-1+1}{2}=\frac{x}{2}\)

\(\sqrt{y-1}=\sqrt{\left(y-1\right).1}\le\frac{y-1+1}{2}=\frac{y}{2}\)

\(P\ge\frac{2xy}{\frac{xy}{4}}=2xy.\frac{4}{xy}=8\)

Dấu bằng xảy ra khi và chỉ khi x=y=2

5 tháng 2 2021

undefined

5 tháng 2 2021

Giups mik vs

lolang

19 tháng 10 2018

a, A = (x-1)(x+6) (x+2)(x+3)

= (x^2 + 5x -6 ) (x^2 + 5x + 6)

Đặt t = x^2 +5x 

A= (t-6)(t+6)

= t^2 - 36

GTNN của A là -36 khi và ck t= 0

<=> x^2 +5x = 0

<=> x=0 hoặc x=-5

Vậy...

22 tháng 8 2017

Bđt phụ \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\forall\)

\(\Leftrightarrow2a^2+2b^2\ge a^2+2ab+b^2\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow a^2+b^2-2ab=\left(a-b\right)^2\ge0\)(đúng)

Áp dụng ta được : 

\(A\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}=\frac{\left(1+4\right)^2}{2}=\frac{25}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

Vậy \(A_{min}=\frac{25}{2}\) tại \(x=y=\frac{1}{2}\)

14 tháng 1 2021

tao chơi hayyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy tao đó

14 tháng 1 2021

Áp dụng bđt: a2 + b2 > = (a + b)2/2

Cm đúng <=> 2a2 + 2b2 - a2 - 2ab - b2 > = 0

<=> (a - b)> = 0 (luôn đúng với mọi a,b

Khi đó, ta có: A = \(\left(1+\frac{1}{x}\right)^2+\left(1+\frac{1}{y}\right)^2\ge\frac{\left(2+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)

Áp dụng bđt: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

CM đúng <=> (a + b)2 > = 4ab

<=> (a - b)2 > = 0 (luôn đúng với mọi a,b)

Ta lại có: A \(\ge\frac{\left(2+\frac{4}{x+y}\right)^2}{2}=\frac{\left(2+\frac{4}{1}\right)^2}{2}=18\)

Dấu"=" xảy ra <=> x = y = 1/2

Vậy minA = 18/ <=> x = y = 1/2

25 tháng 3 2017

Đặt: \(E=\frac{y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)

Ta có: \(F-E=\frac{x^4-y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4-z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4-x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)

\(=\left(x-y\right)+\left(y-z\right)+\left(z-x\right)=0\)

\(\Leftrightarrow F=E\)

Từ đó ta có:

\(2F=\frac{x^4+y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4+z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4+x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)

\(\ge\frac{\left(x^2+y^2\right)^2}{2\left(x^2+y^2\right)\left(x+y\right)}+\frac{\left(y^2+z^2\right)^2}{2\left(y^2+z^2\right)\left(y+z\right)}+\frac{\left(z^2+x^2\right)^2}{2\left(z^2+x^2\right)\left(z+x\right)}\)

\(=\frac{\left(x^2+y^2\right)}{2\left(x+y\right)}+\frac{\left(y^2+z^2\right)}{2\left(y+z\right)}+\frac{\left(z^2+x^2\right)}{2\left(z+x\right)}\)

\(\ge\frac{\left(x+y\right)^2}{4\left(x+y\right)}+\frac{\left(y+z\right)^2}{4\left(y+z\right)}+\frac{\left(z+x\right)^2}{4\left(z+x\right)}\)

\(=\frac{x+y}{4}+\frac{y+z}{4}+\frac{z+x}{4}=\frac{1}{2}\)

\(\Rightarrow F\ge\frac{1}{4}\)

Dấu = xảy ra khi \(x=y=z=\frac{1}{3}\)

25 tháng 3 2017

Bạn ơi, cho mình hỏi này

Sao có \(\frac{x^4+y^4}{\left(x^2+y^2\right)\left(x+y\right)}\ge\frac{\left(x^2+y^2\right)^2}{2\left(x^2+y^2\right)\left(x+y\right)}\)  và sao có  \(\frac{\left(x^2+y^2\right)}{2}\ge\frac{\left(x+y\right)^2}{4\left(x+y\right)}\)  

Giải đáp tận tình hộ mình nhé.