K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2018

GTNN của M =2014 

dấu '=' xảy ra khi và chỉ khi \(\hept{\begin{cases}x=2y-10\\y=8\end{cases}}\)

 \(\hept{\begin{cases}x=15\\y=8\end{cases}}\)

14 tháng 12 2018

Vì \(|x-2y+10|+\left(y-8\right)^2\ge0\)\(\forall x,y\)

\(\Rightarrow M\ge2014\)\(\Rightarrow minM=2014\Leftrightarrow\hept{\begin{cases}x-2y+10=0\\y-8=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-16=-10\\y=8\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=8\end{cases}}\)

Vậy \(minM=2014\Leftrightarrow\hept{\begin{cases}x=6\\y=8\end{cases}}\)

28 tháng 11 2016

\(A=\left|x-3\right|+\left|y+3\right|+2016\)

\(\left|x-3\right|\ge0\)

\(\left|y+3\right|\ge0\)

\(\Rightarrow\left|x-3\right|+\left|y+3\right|+2016\ge2016\)

Dấu ''='' xảy ra khi \(x-3=y+3=0\)

\(x=3;y=-3\)

\(MinA=2016\Leftrightarrow x=3;y=-3\)

\(\left(x-10\right)+\left(2x-6\right)=8\)

\(x-10+2x-6=8\)

\(3x=8+10+6\)

\(3x=24\)

\(x=\frac{24}{3}\)

x = 8

NV
13 tháng 8 2021

\(C=\left|2x+1\right|+\left|-2y-1\right|\ge\left|2x+1-2y-1\right|=2\left|x-y\right|=4\)

\(C_{min}=4\) 

28 tháng 3 2021

Ta có:

\(x^2\ge 0=>x^2-9\ge -9\)

\(|y-2|\ge 0\)

\(=>\left(x^2-9\right)+|y-2|\ge -9\)

\(=>\left(x^2-9\right)+|y-2|+10\ge 1\)

Dấu '=" xảy ra \(\orbr{\begin{cases}x^2-9=-9\\y+2=0\end{cases}}=>\orbr{\begin{cases}x^2=0\\y=0-2\end{cases}=>\orbr{\begin{cases}x=0\\y=-2\end{cases}}}\)

Vậy giá trị nhỏ nhất của \(\left(x^2-9\right)+|y-2|+10\) là-9 với \( x=0; y=-2\)

28 tháng 3 2021

Có (x^2-9)+10=x^2+1 >= 1

Và |y-2| >=0

Nên: (x^2-9)+|y-2|+10 >= 1

Dấu "=" xảy ra khi x^2+1=1 => x=0

                              y-2=0     => y=2

Vậy Biểu thức đạt giá trị nhỏ nhất Min=1 khi x=0 và y=2

22 tháng 5 2021

M = |(x - 2020)(x2 - 16)| + 2x(x - 4) + 8(4 - x ) + 2021

=  |(x - 2020)(x2 - 16)| + 2x(x - 4) - 8(x - 4 ) + 2021

=  |(x - 2020)(x2 - 16)| + (x - 4)(2x - 8) + 2021

= |(x - 2020)(x2 - 16)| + 2(x - 4)2 + 2021 

Lại có \(\hept{\begin{cases}\left|\left(x-2020\right)\left(x^2-16\right)\right|\ge0\forall x\\2\left(x-4\right)^2\ge0\forall x\end{cases}}\)

=> |(x - 2020)(x2 - 16) + 2(x - 4)2 + 2021 \(\ge2021\forall x\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-2020\right)\left(x^2-16\right)=0\\2\left(x-4\right)^2=0\end{cases}}\)

Khi (x - 2020)(x2 - 16) = 0 

=> \(\orbr{\begin{cases}x-2020=0\\x^2-16=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2020\\x=\pm4\end{cases}}\)(1)

Khi 2(x - 4)2 = 0

=> x -  4 = 0

=> x = 4 (2)

Từ (1) (2) => x = 4 

Vậy Min M = 2021 <=> x = 4

10 tháng 3 2022

\(P=\left(x^3-8\right)^2+\left|2y-9\right|-20\ge-20\)

Dấu ''='' xảy ra khi x = 2 ; y = 9/2 

-> chọn A