
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a, \(A=x^2+x+1=\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow A=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu "=" xảy ra khi x=-1/2
Vậy Amin=3/4 khi x=-1/2
b,\(B=2x^2-5x-2\)
\(\Rightarrow2B=4x^2-10x-4=\left(4x^2-10x+\frac{25}{4}\right)-\frac{41}{4}=\left(2x-\frac{5}{2}\right)^2-\frac{41}{4}\)
Vì \(\left(2x-\frac{5}{2}\right)^2\ge0\Rightarrow2B=\left(2x-\frac{5}{2}\right)^2-\frac{41}{4}\ge-\frac{41}{4}\Rightarrow B\ge-\frac{41}{8}\)
Dấu "=" xảy ra khi x=5/4
Vậy Bmin=-41/8 khi x=5/4
c,\(C=x^2+5y^2+2xy-y+3=\left(x^2+2xy+y^2\right)+\left(4y^2-y+\frac{1}{16}\right)+\frac{47}{16}=\left(x+y\right)^2+\left(2y-\frac{1}{4}\right)^2+\frac{47}{16}\)
Vì\(\hept{\begin{cases}\left(x+y\right)^2\ge0\\\left(2y-\frac{1}{4}\right)^2\ge0\end{cases}}\Rightarrow\left(x+y\right)^2+\left(2y-\frac{1}{4}\right)^2\ge0\)
\(\Rightarrow C=\left(x+y\right)^2+\left(2y-\frac{1}{4}\right)^2+\frac{47}{16}\ge\frac{47}{16}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y=0\\2y-\frac{1}{4}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{-1}{8}\\y=\frac{1}{8}\end{cases}}}\)
Vậy Cmin=47/16 khi x=-1/8,y=1/8


a)\(A=x^2+x+1\)
\(A=x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\)
\(A=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Vậy Amin = 3/4 <=> x = -1/2
b)\(B=2x^2-5x-2\)
\(B=\left(\sqrt{2}x\right)^2-2.\sqrt{2}.\sqrt{2}+\left(\sqrt{2}\right)^2-9\)
\(B=\left(\sqrt{2}x-\sqrt{2}\right)^2-9\ge-9\)
Vậy Bmin = -9 <=> x = 1

\(E=5x^2+8xy+5y^2-2x+2y\)
\(=\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)-2\)
\(=4\left(x^2+2xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)-2\)
\(=4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2-2\ge-2\) có GTNN là - 2
Dấu "=" xảy ra \(\Leftrightarrow x=1;y=-1\)
Vậy \(E_{min}=-2\) tại \(x=1;y=-1\)

biet tong cua so thu nhat va so thu hai bang 5,8.Tong cua so thu hai va so thu ba bang 6,7.Tong so thu nhat va so thu ba bang 7,5.Tim moi so do?

A= 2x2+y2- 2xy - 2x +3
= x2 + y2 - 2xy + x2 - 2x +1 - 1 + 3
= (x-y)2 + (x-1)2 + 2 >=2 --> MIN A=2 khi x=-1;y=-1

\(A=\left(x^2+4xy+4y^2\right)+2\left(x+2y\right)+y^2-4y+12\)
\(=\left(x+2y\right)^2+2\left(x+2y\right)+1+y^2-4y+4+7\)
\(=\left(x+2y+1\right)^2+\left(y-2\right)^2+7\ge7\)
Dấu "=" xảy ra \(\Leftrightarrow x=-5;y=2\)
\(A=x^2+5y^2+4xy+2x+12\)
\(\Rightarrow A=x^2+4xy+2x+4y+4y^2+1+y^2-4y+4+7\)
\(\Rightarrow A=\left(x+2y+1\right)^2+\left(y-2\right)^2+7\ge7\)
Vậy giá trị nhỏ nhất của biểu thức A =7
\(\Leftrightarrow\hept{\begin{cases}x+2y+1=0\\y-2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-5\\y=2\end{cases}}\)

\(A=2x^2+y^2-2xy-2x+3\)
\(A=\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+2\)
\(A=\left(x-y\right)^2+\left(x-1\right)^2+2\)
Mà \(\left(x-y\right)^2\ge0\forall x;y\)
\(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow A\ge2\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}x-y=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=1\end{cases}}\)
Vậy Min A = 2 khi x=y=1
M = 2x2 + 5y2 - 2xy + 1
=> 2M = 4x2 + 10y2 - 4xy + 2
= (4x2 - 4xy + y2) + 9y2 + 2
= (4x - y)2 + (3y)2 + 2
=> M = \(\frac{\left(4x-y\right)^2}{2}+\frac{\left(3y\right)^2}{2}+1\ge1\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}4x-y=0\\3y=0\end{cases}}\Leftrightarrow x=y=0\)
Vậy Min M = 1 <=> x = y = 0