Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=x^2+y^2-xy-x+y+1\)
\(4M=4x^2+4y^2-4xy-4x+4y+4\)
\(=\left(4x^2+y^2+1-4xy-4x+2y\right)+\left(3y^2+2y+3\right)\)
\(=\left(2x-y-1\right)^2+3\left(y^2+\dfrac{2}{3}y+\dfrac{1}{9}\right)+\dfrac{8}{3}\)
\(=\left(2x-y-1\right)^2+3\left(y+\dfrac{1}{3}\right)^2+\dfrac{8}{3}\ge\dfrac{8}{3}\)
\(\Rightarrow M\ge\dfrac{2}{3}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}2x-y-1=0\\y+\dfrac{1}{3}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=-\dfrac{1}{3}\end{matrix}\right.\)
Vậy \(MinM=\dfrac{2}{3}\)
ta biến đổi thành
x^3+y^3+xy=8-5xy
suy ra M_min thì 5xy_max
ta có 5xy <= \(5\left(\frac{x+y}{2}\right)^2\)
dấu "=" khi x=y=1
vật M_min=3
\(M=x^2+y^2-xy-x+y+1\)
\(=\left(x^2-xy+\frac{1}{4}y^2\right)-\left(x-\frac{1}{2}y\right)+\frac{1}{4}+\left(\frac{3}{4}y^2+\frac{1}{2}y+\frac{1}{12}\right)+\frac{2}{3}\)
\(=\left(x-\frac{1}{2}y\right)^2-\left(x-\frac{1}{2}y\right)+\frac{1}{4}+\frac{3}{4}\left(y^2+\frac{2}{3}y+\frac{1}{9}\right)+\frac{2}{3}\)
\(=\left(x-\frac{1}{2}y-\frac{1}{2}\right)^2+\frac{3}{4}\left(y+\frac{1}{3}\right)^2+\frac{2}{3}\ge\frac{2}{3}\forall x;y\)có GTNN là \(\frac{2}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{1}{3};y=-\frac{1}{3}\)
mình làm thế này có đúng không bạn?
ta có : \(M=x^2+y^2-xy-x+y+1\)
<=> \(2M=2x^2+2y^2-2xy-2x+2y+2\)
<=> \(2M=x^2-2xy+y^2+x^2-2x+1+y^2+2y+1\)
<=>\(2M=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2\)
<=> \(M=\frac{\left(x-y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2}{2}\)\(\ge0\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-y=0\\x-1=0\\y+1=0\end{cases}}\)<=>\(\hept{\begin{cases}x=y\\x=1\\y=-1\end{cases}}\)
\(x+y=1\Rightarrow x=1-y\)
\(A=x^3+y^3+xy\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(=x^2+y^2\) (vì x + y = 1)
\(=\left(1-y\right)^2+y^2\)
\(=2y^2-2y+1\)
\(=2\left(y^2-y+\frac{1}{4}\right)+\frac{1}{2}=2\left(y-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\forall y\)
Dấu "=" xảy ra khi: \(y-\frac{1}{2}=0\Rightarrow y=\frac{1}{2}\Rightarrow x=1-y=\frac{1}{2}\)
Vậy GTNN của A là \(\frac{1}{2}\)khi \(x=y=\frac{1}{2}\)
\(A=x^3+y^3+xy=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(=x^2-xy+y^2+xy=x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=\frac{1}{2}\)
Nên min A là \(\frac{1}{2}\) khi \(x=y=\frac{1}{2}\)
Lời giải:
$M=x^2+y^2+xy-x+y+2025$
$2M=2x^2+2y^2+2xy-2x+2y+4050$
$=(x^2+2xy+y^2)+(x^2-2x+1)+(y^2+2y+1)+4048$
$=(x+y)^2+(x-1)^2+(y+1)^2+4048\geq 0+0+0+4048 = 4048$
$\Rightarrow M\geq 2024$
Vậy $M_{\min}=2024$
Giá trị này đạt tại $x+y=x-1=y+1=0$
$\Leftrightarrow x=1; y=-1$