K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2017

Do x> 0 nên 2x >0  và  3 x > 0 .

Áp dụng bất đẳng thức Cô- si cho 2 số dương:   2 x ; 3 x

f x = 2 x + 3 x ≥ 2 . 2 x . 3 x = 2 6

Dấu “=” xảy ra khi 2 x = 3 x ⇔ x = 3 2 = 6 2 .

19 tháng 4 2021

Áp dụng BĐT Cosi, ta có:

\(\frac{a}{9}\)+\(\frac{1}{a}\)>= 2.\(\frac{1}{3}\)=\(\frac{2}{3}\)

=> a+\(\frac{1}{a}\)=\(\frac{a}{9}\)+\(\frac{8a}{9}\)+\(\frac{1}{a}\)>= \(\frac{2}{3}\)+\(\frac{8a}{9}\)>= \(\frac{2}{3}\)+\(\frac{8.3}{9}\)=\(\frac{10}{3}\)

Vậy GTNN của P là: \(\frac{10}{3}\), tại a=3

26 tháng 7 2018

Do x > 0 nên  x 2 > 0 ; 3 x 2 > 0

Áp dụng bất đẳng thức Cô – si cho 3 số dương x 2 ; x 2 ; 3 x 2  ta được:

f x = x + 3 x 2 = x 2 + x 2 + 3 x 2 ≥ 3 . x 2 . x 2 . 3 x 2 3 = 3 . 3 4 3

22 tháng 4 2019

a) Xét \(\Delta\) = b2 - 4ac = (-m)2 - 4(2m - 4)

= m2 - 8m + 16 = ( m - 4 )2

Ta có: ( m - 4 )2 \(\ge\) 0

=> Pt luôn có nghiệm

b) Vì phương trình luôn có nghiệm nên áp dụng định lí Ta- lét:

\(\left\{{}\begin{matrix}x_1+x_2=\frac{-b}{a}==m\\x_1x_2=2m-4\end{matrix}\right.\)
Xét phương trình: x12 + x22 - 9

= x12 + x22 + 2x1x2 - 2x1x2 - 9

= (x1 + x2)2 - 2x1x2 - 9

= (-m)2 - 2(2m - 4) - 9

= m2 - 4m + 8 - 9

= m2 - 4m - 1 = m2 - 4m + 4 - 5

= (m - 2)2 - 5

Xét (m - 2)2 \(\ge\) 0

=> (m - 2)2 - 5 \(\ge\) -5

Dấu " =" xảy ra khi m - 2 = 0

<=> m = 2

NV
22 tháng 4 2019

\(\Delta=m^2-8m+16=\left(m-4\right)^2\ge0\Rightarrow\) pt luôn có nghiệm

Khi đó theo Viet \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=2m-4\end{matrix}\right.\)

\(A=x_1^2+x_2^2-9=\left(x_1+x_2\right)^2-2x_1x_2-9\)

\(A=m^2-2\left(2m-4\right)-9\)

\(A=m^2-4m-1\)

\(A=\left(m-2\right)^2-5\ge-5\)

\(\Rightarrow A_{min}=-5\) khi \(m=-2\)

19 tháng 11 2018

Với x > 1  thì x -1 >0 .

Áp dụng bất đẳng thức Cô- si ta có:

f x = x 2 + 2 x - 1 = x - 1 2 + 2 x - 1 + 1 2 ≥ 2 . x - 1 2 . 2 x - 1 + 1 2 ⇔ f x ≥ 2 + 1 2 = 5 2

Giá trị nhỏ nhất của hàm số  f x = x 2 + 2 x - 1   v ớ i   x > 1   là  5 2

Dấu “=’ xảy  ra khi x - 1 2 = 2 x - 1 ⇔ x - 1 2 = 4 ⇔ x = 3 > 1

17 tháng 8 2019

29 tháng 10 2017

Đặt t=\(\sqrt{x^2-3x+4}\)
ta có t \(\in\)(\(\sqrt{2}\) ;\(2\sqrt{2}\))

suy ra y = \(t^2-4t-4\) = \(\left(t-2\right)^2-8\) \(\ge-8\)

1 tháng 11 2017

Đặt \(t=\sqrt{x^2-3x+4}\).

Ta có hàm số có dạng: \(y=t^2-4t-4\)(*) trên \(\left[1;4\right]\)

Đỉnh \(I\left(2;-8\right)\)

Hàm số đạt GTNN khi \(t=2\Leftrightarrow\sqrt{x^2-3x+4}=2\Leftrightarrow x^2-3x=0\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=3\left(tm\right)\end{matrix}\right.\)

Vậy hàm số (*) đạt GTNN trên \(\left[1;4\right]\) là -8 khi x=3

11 tháng 1 2018

a) Ta thấy tần số lớn nhất thuộc về lớp [ 30 ; 40 ) . Tần số của lớp đó là  h = 15 60 = 0 , 25 = 25 %