\(\left|x-2022\right|+\left|x-2023\right|\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2022

- Ta có bất đẳng thức: \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\left(1\right)\)

* Chứng minh: 

\(\Leftrightarrow\left(\left|A\right|+\left|B\right|\right)^2\ge\left(A+B\right)^2\)

\(\Leftrightarrow A^2+2\left|AB\right|+B^2\ge A^2+2AB+B^2\)

\(\Leftrightarrow\left|AB\right|\ge AB\) (luôn đúng)

- Dấu "=" xảy ra khi \(AB\ge0\Leftrightarrow\left[{}\begin{matrix}A\ge0;B\ge0\\A\le0;B\le0\end{matrix}\right.\)

- Quay lại bài toán:

\(A=\left|x-2022\right|+\left|x-2023\right|=\left|x-2022\right|+\left|2023-x\right|\ge\left|x-2022+2023-x\right|=\left|1\right|=1\)

- Dấu "=" xảy ra khi \(\left[{}\begin{matrix}x-2022\ge0;2023-x\ge0\\x-2022\le0;2023-x\le0\end{matrix}\right.\Leftrightarrow2022\le x\le2023\)

- Vậy \(MinA=1\)

21 tháng 8 2022

\(A=\left|x-2022\right|+\left|2023-x\right|\ge\left|x-2022+2023-x\right|=1\)

Dấu ''='' xảy ra khi \(2022\le x\le2023\)

25 tháng 2 2019

A = 130 

24 tháng 6 2017

Phân thức đại số

5 tháng 9 2016

a/ \(A=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)=\left[\left(x+1\right)\left(x-6\right)\right].\left[\left(x-2\right)\left(x-3\right)\right]\)

\(=\left(x^2-5x-6\right)\left(x^2-5x+6\right)=\left(x^2-5x\right)^2-36\ge-36\)

Suy ra Min A = -36 <=> \(x^2-5x=0\Leftrightarrow x\left(x-5\right)=0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=5\end{array}\right.\)

b/ \(B=19-6x-9x^2=-9\left(x-\frac{1}{3}\right)^2+20\le20\)

Suy ra Min B = 20 <=> x = 1/3

5 tháng 9 2016

a) \(A=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)\)

\(=\left[\left(x+1\right)\left(x-6\right)\right]\left[\left(x-2\right)\left(x-3\right)\right]\)

\(\left(x^2-5x-6\right)\left(x^2-5x+6\right)=\left(x^2-5x\right)^2-36\)

Vì \(\left(x^2-5x\right)^2\ge0\)

=> \(\left(x^2-5x\right)^2-36\ge-36\)

Vậy GTNN của A là -36 khi \(x^2-5x=0\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=5\end{array}\right.\)

b) \(B=19-6x-9x^2=-\left(9x^2+6x+1\right)+20=-\left(3x+1\right)^2+20\)

Vì \(-\left(3x+1\right)^2\le0\)

=> \(-\left(3x+1\right)+20\le20\)

Vậy GTLN của B là 20 khi \(x=-\frac{1}{3}\)

31 tháng 7 2018

Câu hỏi của TH - Toán lớp 8 - Học toán với OnlineMath tham kahr

16 tháng 9 2018

D=(x-1)(x+5)(x-3)(x+7)

=(x2+4x-5)(x2+4x-21)

=(x2+4x-5)2-16(x2+4x-5)

=[(x2+4x-5)2-16(x2+4x-5)+64]-64>=-64

21 tháng 5 2020

x=-6 thì D có giá trị nhỏ nhất là: -70

11 tháng 8 2020

a)  \(A=\left(x-3\right)\left(x+5\right)+20\)

\(\Leftrightarrow A=x^2+5x-3x-15+20\)

\(\Leftrightarrow A=x^2+2x+5\)

\(\Leftrightarrow A=x^2+2x+1+4\)

\(\Leftrightarrow A=\left(x+1\right)^2+4\ge4\)

GTNN của A = 4 

\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

Vậy ..........................

11 tháng 8 2020

c, đề : \(C=x^2+2x+1\)  đước ko chị ? 

31 tháng 7 2018

Đặt x2-2x+1=t, ta có:

\(A=\left(t-1\right)\left(t+1\right)=t^2-1=\left(x^2-2x+1\right)^2-1\ge-1\)

Dấu "=" xảy ra khi \(x^2-2x+1=0\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)

31 tháng 7 2018

Đặt \(\left(x^2-2x\right)\left(x^2-2x=2\right)=k.\left(k+2\right)=A\)

\(\Rightarrow A=k.\left(k+2\right)=k^2+2k\)

\(\Rightarrow A=k^2+k+k+1-1=k\left(k+1\right)+\left(k+1\right)-1\)

\(\Rightarrow A=\left(k+1\right)^2-1\)

\(\Rightarrow A=\left(x^2-2x+1\right)^2-1\)

\(\Rightarrow A=\left(x^2-x-x+1\right)^2-1=\left[x.\left(x-1\right)-\left(x-1\right)\right]^2-1\)

\(\Rightarrow A=\left(x-1\right)^2-1\ge-1\)

( Dấu "=" xảy ra <=> x=1 )

Ta có : \(A=\frac{x^2+25x+144}{x}=x+\frac{144}{x}+25\)

Các số dương \(x\)và \(\frac{144}{x}\)Có tích ko đổi nên tổng nhỏ nhất khi và chỉ khi \(x=\frac{144}{x}\)

\(\Rightarrow x=12\)

Vậy \(Min\)\(A=49\Leftrightarrow x=12\)

18 tháng 8 2019

Ta có: 

\(A=\frac{\left(x+16\right)\left(x+19\right)}{x}\)

\(=\frac{x^2+25x+144}{x}=\frac{\left(x+12,5\right)^2-12,25}{x}\)

\(=\frac{\left(x+12,5\right)^2}{x}-\frac{12,25}{x}\ge\frac{-12,5}{x}\forall x>0\)

Đến đây dễ rồi bạn tự làm nốt !

19 tháng 10 2018

a, A = (x-1)(x+6) (x+2)(x+3)

= (x^2 + 5x -6 ) (x^2 + 5x + 6)

Đặt t = x^2 +5x 

A= (t-6)(t+6)

= t^2 - 36

GTNN của A là -36 khi và ck t= 0

<=> x^2 +5x = 0

<=> x=0 hoặc x=-5

Vậy...

30 tháng 12 2016

\(A=\left(x+8\right)^4+\left(x+6\right)^4\)

       Vì \(\left(x+8\right)^4\ge0;\left(x+6\right)^4\ge0\)

                         Suy ra:\(\left(x+8\right)^4+\left(x+6\right)^4\ge0\)

Dấu = xảy ra khi \(\orbr{\begin{cases}x+8=0\\x+6=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-8\\x=-6\end{cases}}\)

       Vậy Max A=0 khi x=-8;-6

30 tháng 12 2016

GTNN của A=2

khi =!y+2!=!y!

y=-1

c

có  thiện chí hỏi xẽ có câu trả lời chi tiết