Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{4\left(x+y+\sqrt{xy}\right)}{x+y+2\sqrt{xy}}=\frac{3\left(x+y+2\sqrt{xy}\right)+\left(x+y-2\sqrt{xy}\right)}{\left(x+y+2\sqrt{xy}\right)}=\frac{3\left(\sqrt{x}+\sqrt{y}\right)^2+\left(\sqrt{x}-\sqrt{y}\right)^2}{\left(\sqrt{x}+\sqrt{y}\right)^2}=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\left(\sqrt{x}+\sqrt{y}\right)^2}+3\ge3\)
=> \(A\ge3\)
Vậy Min A = 3 khi x=y
Theo em bài này chỉ có min thôi nhé!
Rất tự nhiên để khử căn thức thì ta đặt \(\left(\sqrt{x};\sqrt{y};\sqrt{z}\right)=\left(a;b;c\right)\ge0\)
Khi đó \(M=\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\) với abc = \(\sqrt{xyz}=1\) và a,b,c > 0
Dễ thấy \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)
(chuyển vế qua dùng hằng đẳng thức là xong liền hà)
Do đó \(2M=\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+bc+c^2}+\frac{c^3+a^3}{c^2+ca+a^2}\)
Đến đây thì chứng minh \(\frac{a^3+b^3}{a^2+ab+b^2}\ge\frac{1}{3}\left(a+b\right)\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\left(a+b\right)\ge0\)(đúng)
Áp dụng vào ta thu được: \(2M\ge\frac{2}{3}\left(a+b+c\right)\Rightarrow M\ge\frac{1}{3}\left(a+b+c\right)\ge\sqrt[3]{abc}=1\)
Vậy...
P/s: Ko chắc nha!
Ta có : 2P = \(\frac{\sqrt{4x^2-4xy+4y^2}}{x+y+2z}+\frac{\sqrt{4y^2-4yz+4z^2}}{y+z+2x}+\frac{\sqrt{4z^2-4zx+4x^2}}{z+x+2y}\)
\(=\frac{\sqrt{\left(2x-y\right)^2+\left(\sqrt{3}y\right)^2}}{x+y+2z}+\frac{\sqrt{\left(2y-z\right)^2+\left(\sqrt{3}z\right)^2}}{y+z+2x}+\frac{\sqrt{\left(2z-x\right)^2+\left(\sqrt{3}x\right)^2}}{z+x+2y}\)
Lại có \(\frac{\sqrt{\left[\left(2x-y\right)^2+\left(\sqrt{3}y\right)^2\right]\left[\left(1^2+\left(\sqrt{3}\right)^2\right)\right]}}{x+y+2z}\ge\frac{\left[\left(2x-y\right).1+3y\right]}{x+y+2z}=\frac{2\left(x+y\right)}{x+y+2z}\)
=> \(\sqrt{\frac{\left(2x-y\right)^2+\left(\sqrt{3}y\right)^2}{x+y+2z}}\ge\frac{x+y}{x+y+2z}\)(BĐT Bunyakovsky)
Tương tự ta đươc \(2P\ge\frac{x+y}{x+y+2z}+\frac{y+z}{2x+y+z}+\frac{z+x}{2y+z+x}\)
Đặt x + y = a ; y + z = b ; x + z = c
Khi đó \(2P\ge\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)-3\)
\(\ge\left(a+b+c\right).\frac{9}{2\left(a+b+c\right)}-3\ge\frac{9}{2}-3=\frac{3}{2}\)
=> \(P\ge\frac{3}{4}\)
Dấu "=" xảy ra <=> x = y = z
bài 8 : bỏ dấu hoặc rồi tính
a;( 17 - 299) + ( 17 - 25 + 299)
\(\left(\sqrt{x},\sqrt{y},\sqrt{z}\right)\rightarrow\left(a,b,c\right)\)
\(\Rightarrow ab+bc+ca=3\)
Áp dụng bđt Cauchy-Schwarz ta có
\(P=\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}=3\)
Dấu "=" xảy ra khi a=b=c=1 => x=y=z=1
Bài 1: \(T=\sqrt{\frac{x^3}{x^3+8y^3}}+\sqrt{\frac{4y^3}{y^3+\left(x+y\right)^3}}\)
\(=\frac{x^2}{\sqrt{x\left(x^3+8y^3\right)}}+\frac{2y^2}{\sqrt{y\left[y^3+\left(x+y\right)^3\right]}}\)
\(=\frac{x^2}{\sqrt{\left(x^2+2xy\right)\left(x^2-2xy+4y^2\right)}}+\frac{2y^2}{\sqrt{\left(xy+2y^2\right)\left(x^2+xy+y^2\right)}}\)
\(\ge\frac{2x^2}{2x^2+4y^2}+\frac{4y^2}{2y^2+\left(x+y\right)^2}\ge\frac{2x^2}{2x^2+4y^2}+\frac{4y^2}{2x^2+4y^2}=1\)
\(\Rightarrow T\ge1\)
Bài 2:
[Toán 10] Bất đẳng thức | Page 5 | HOCMAI Forum - Cộng đồng học sinh Việt Nam
Với x, y thực dương áp dụng BĐT Cauchy ta có:
\(P=\frac{16\sqrt{xy}}{x+y}+\frac{x^2+y^2}{xy}\)
\(=\frac{16\sqrt{xy}}{x+y}+\frac{\left(x+y\right)^2-2xy}{xy}\)
\(=\frac{16\sqrt{xy}}{x+y}+\left(\frac{\left(x+y\right)^2}{xy}+4\right)-6\)
\(\ge\frac{16\sqrt{xy}}{x+y}+2\sqrt{\frac{4\left(x+y\right)^2}{xy}}-6\)
\(=\frac{16\sqrt{xy}}{x+y}+\frac{4\left(x+y\right)}{\sqrt{xy}}-6\)
\(\ge2\sqrt{\frac{16\sqrt{xy}}{x+y}.\frac{4\left(x+y\right)}{xy}}-6=2\sqrt{16.4}-6=10\)
Vậy Pmin = 10 tại x = y.
áp dụng bđt cauchy ->x+y\(\supseteq\)2\(\sqrt{xy}\)
x2+y2\(\supseteq\)2xy
nên P\(\supseteq\)\(\frac{16\sqrt{xy}}{2\sqrt{xy}}\)+\(\frac{2xy}{xy}\)=8+2=10
dấu = xảy ra\(\Leftrightarrow\)x=y
Ta có:
A=\(\frac{x\sqrt{y-2}+y\sqrt{x-3}}{xy}\)
\(=\frac{\sqrt{y-2}}{y}+\frac{\sqrt{x-3}}{x}\)
Do \(x\ge3;y\ge2\)nen
\(\frac{\sqrt{y-2}}{y}\ge0;\frac{\sqrt{x-3}}{x}\ge0\)
\(\Rightarrow A\ge0\)
Dau "=" xảy ra khi y=2 ; x=3
Vay minA =0 khi x=3; y=2