Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(4x^2+12x+100=\left(2x+3\right)^2+91\)
\(\Rightarrow B=\frac{-9}{\left(2x+3\right)^2+91}\)
Vì \(\left(2x+3\right)^2\ge0;\forall x\)
\(\Rightarrow\left(2x+3\right)^2+91\ge0+91;\forall x\)
\(\Rightarrow\frac{9}{\left(2x+3\right)^2+91}\le\frac{9}{91};\forall x\)
\(\Rightarrow\frac{-9}{\left(2x+3\right)^2+91}\ge\frac{-9}{91};\forall x\)
Dấu '"=" xảy ra \(\Leftrightarrow2x+3=0\)
\(\Leftrightarrow x=\frac{-3}{2}\)
Vậy MIN \(B=\frac{-9}{91}\)\(\Leftrightarrow x=\frac{-3}{2}\)
TL:
\(B=\frac{-9}{\left(2x+6\right)^2+64}\)
Để Bmin \(\Rightarrow\left(2x+6\right)^2+64\) nhỏ nhất
Mà \(\left(2x+6\right)^2+64\ge64\forall x\in R\)
dấu "=" xảy ra <=> \(\left(2x+6\right)^2=0\Leftrightarrow2x+6=0\Leftrightarrow2x=-6\Leftrightarrow x=-3\)
=>Bmin =\(\frac{-9}{64}\) tại x=-3
Vậy.......
a, ĐKXĐ: \(x\ne-3\) và \(x\ne\pm1\)
b, \(P=\frac{x\left(x+3\right)-11+x^2-3x+9}{x^3+27}:\frac{x^2-1}{x+3}\)
\(P=\frac{2x^2-2}{x^3+27}.\frac{x+3}{x^2-1}\)
\(=\frac{2\left(x-1\right)\left(x+1\right)}{\left(x+3\right)\left(x^2-3x+9\right)}.\frac{x+3}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{2}{x^2-3x+9}\)
c, \(P=\frac{2}{x^2-3x+9}==\frac{2}{\left(x-\frac{3}{2}\right)^2+\frac{27}{4}}\le\frac{2}{\frac{27}{4}}=\frac{8}{27}\)
Dấu "=" xảy ra khi: \(x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)
Vậy P lớn nhất bằng \(\frac{8}{27}\) \(\Leftrightarrow x=\frac{3}{2}\)
\(P=\left(\frac{x}{x^2-3x+9}-\frac{11}{x^3+27}+\frac{1}{x+3}\right):\frac{x^2-1}{x+3}.\)
ĐKXĐ : \(x\ne-3;x\ne0\)
\(P=\left(\frac{x\left(x+3\right)}{\left(x+3\right)\left(x^2-3x+9\right)}-\frac{11}{\left(x+3\right)\left(x^2-3x+9\right)}+\frac{x^2-3x+9}{\left(x+3\right)\left(x^2-3x+9\right)}\right).\frac{x+3}{x^2-1}\)
\(P=\left(\frac{x^2+3x-11+x^2-3x+9}{\left(x+3\right)\left(x^2-3x+9\right)}\right).\frac{x+3}{x^2-1}\)
\(P=\frac{2x^2-2}{\left(x^2-3x+9\right)}.\frac{1}{x^2-1}=\frac{2\left(x^2-1\right)}{\left(x^2-3x+9\right)}.\frac{1}{x^2-1}\)
\(P=\frac{2}{x^2-3x+9}\)
\(P=\frac{12x^2-6x+4}{x^2+1}=\frac{\left(9x^2-6x+1\right)+3\left(x^2+1\right)}{x^2+1}=\frac{\left(3x-1\right)^2}{x^2+1}+3\ge3\forall x\)
Dấu "=" xảy ra khi: \(3x-1=0\Rightarrow x=\frac{1}{3}\)
Vậy \(P_{min}=3\Leftrightarrow x=\frac{1}{3}\)
\(\left(x^2+1\right)^2+3x\left(x^2+1\right)+2x^2=0\)
\(\Leftrightarrow\left(x^2+1\right)^2+2\left(x^2+1\right)^2\frac{3x}{2}+\frac{9x^2}{4}-\frac{x^2}{4}=0\)
\(\Leftrightarrow\left(x^2+1+\frac{3x}{2}\right)^2-\left(\frac{x}{2}\right)^2=0\)
\(\Leftrightarrow\left(x^2+1+\frac{3x}{2}-\frac{x}{2}\right)\left(x^2+1+\frac{3x}{2}+\frac{x}{2}\right)=0\)
\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2+2x+1\right)=0\)
\(\forall x,\)\(x^2+x+1=x^2+2x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)
\(\Rightarrow x^2+2x+1=0\)
\(\Leftrightarrow\left(x+1\right)^2=0\)
\(\Leftrightarrow x=-1\)
Vậy tập nghiệm của pt là S={-1}
a, x2 + 10x + 27
Đặt A = x2 + 2. x. 5 + 52 + 2
= ( x + 5 )2 + 2
Vì ( x + 5 )2 \(\ge\)0 với mọi x
=> ( x + 5 )2 + 2 \(\ge\)2 với mọi x
Hay A \(\ge\)2
Dấu " = " xảy ra khi:
( x + 5 )2 = 0
x + 5 = 0
x = - 5
Vậy Min A = 2 khi x = - 5
b, x2 + x + 7
Đặt B = x2 + x + 7
\(=x^2+x+\frac{1}{4}+\frac{27}{4}\)
\(=\left[x^2+2\cdot x\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]+\frac{27}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{27}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\)với mọi x
\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{27}{4}\ge\frac{27}{4}\)với mọi x
Hay B \(\ge\frac{27}{4}\)
Dấu " = " xảy ra khi:
\(\left(x+\frac{1}{2}\right)^2=0\)
\(x+\frac{1}{2}=0\)
\(x=-\frac{1}{2}\)
Vậy Min B = \(\frac{27}{4}\)khi x = \(-\frac{1}{2}\)
a) x2 + 10 x + 27 =( x2 + 2. 5 . x + 52 ) + 2 = ( x + 5 ) 2 + 2
Vì ( x + 5 ) 2 \(\ge\) 0 với mọi x nên ( x + 5 ) 2 + 2 \(\ge\) 2 với mọi x
Dấu bằng xảy ra \(\Leftrightarrow\)x + 5 = 0 \(\Leftrightarrow\) x = -5
b) x2 + x + 7 = 0 \(\Leftrightarrow\) x2 + 2. x . \(\frac{1}{2}\)+ \(\left(\frac{1}{2}\right)^2\) + \(\frac{27}{4}\) = 0 \(\Leftrightarrow\)( x + 1/2) 2 + 27/4 = 0
Vì ( x + 1/2 )2 \(\ge\) 0 với mọi x nên ( x + 1/2) 2 + 27/4 \(\ge\)27/4 với mọi x
Dấu bằng xảy ra \(\Leftrightarrow\)x+ 1/2 = 0 \(\Leftrightarrow\) x = ---\(\frac{1}{2}\)
c + d ) Tương tự a, b
e) x2 + 14 x + y2 - 2y +7 = 0 \(\Leftrightarrow\) ( x2 + 2. x. 7 + 72 ) + ( y2 -- 2y + 1 ) -43 = 0 \(\Leftrightarrow\) ( x + 7 ) 2 + ( y -- 1 ) 2 --43 = 0 ( 1 )
Vì ( x + 7 )2 \(\ge\) 0 và ( y -- 1 )2 \(\ge\) 0 với mọi x, y nên ( 1 ) \(\ge\) --43 với mọi x, y
Dấu bằng xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}x+7=0\\y-1=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=-7\\y=1\end{cases}}\)
\(B=\frac{x^2-2}{x^2+1}=\frac{x^2+1-3}{x^2+1}=1-\frac{3}{x^2+1}\)
\(B_{min}\Rightarrow\left(\frac{3}{x^2+1}\right)_{max}\Rightarrow\left(x^2+1\right)_{min}\)
\(x^2+1\ge1\). dấu = xảy ra khi x2=0
=> x=0
Vậy \(B_{min}\Leftrightarrow x=0\)
ta có: \(x^2+2x-2=x^2+2x+1^2-3=\left(x+1\right)^2-3\ge-3\)
dấu = xảy ra khi \(x+1=0\)
\(\Rightarrow x=-1\)
Vậy\(\left(x^2+2x-2\right)_{min}\Leftrightarrow x=-1\)
A=\(\frac{27-12x}{x^2+9}\)=\(\frac{x^2-12x+36-\left(x^2+9\right)}{x^2+9}\)=\(\frac{\left(x-6\right)^2}{x^2+9}-1\)\(\ge-1\)
dau bằng xảy ra khi \(\left(2x+3\right)^2=0\Leftrightarrow2x+3=0\Leftrightarrow2x=-3\Leftrightarrow x=\frac{-3}{2}\)
còn 1 trường hợp nữa cũng tương tự