Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 :
a) \(A=3,7+\left|4,3-x\right|\ge3,7\)
Min A = 3,7 \(\Leftrightarrow x=4,3\)
b) \(B=\left|3x+8,4\right|-14\ge-14\)
Min B = -14 \(\Leftrightarrow x=\frac{-14}{5}\)
c) \(C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)
Min C = 17,5 \(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{-3}{2}\end{cases}}\)
d) \(D=\left|x-2018\right|+\left|x-2017\right|\)
\(D=\left|2018-x\right|+\left|x-2017\right|\ge\left|2018-x+x-2017\right|=1\)
Min D =1 \(\Leftrightarrow\left(2018-x\right)\left(x-2017\right)\ge0\)
\(\Leftrightarrow2017\le x\le2018\)
\(A=3,7+\left|4,3-x\right|\)
Ta có \(\left|4,3-x\right|\ge0\Leftrightarrow A=3,7+\left|4,3-x\right|\ge3,7\)
Dấu '' = '' xảy ra \(\Leftrightarrow\left|4,3-x\right|=0\Leftrightarrow4,3-x=0\Leftrightarrow x=4,3\)
\(B=\left|3x+8,4\right|-14\)
Ta có \(\left|3x+8,4\right|\ge0\Leftrightarrow B=\left|3x+8,4\right|-14\ge-14\)
Dấu '' = '' xảy ra \(\Leftrightarrow\left|3x+8,4\right|=0\Leftrightarrow3x=-8,4\Leftrightarrow x=2,8\)
\(C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\)
Ta có \(\hept{\begin{cases}\left|4x-3\right|\ge0\\\left|5y+7,5\right|\ge0\end{cases}}\Leftrightarrow C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)
Dấu '' = '' xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|4x-3\right|=0\\\left|5y+7,5\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}4x-3=0\\5y+7,5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}}\)
\(D=\left|x-2018\right|+\left|x-2017\right|\)
\(\Leftrightarrow D=\left|x-2018\right|+\left|2017-x\right|\)
Áp dụng bất đẳng thức \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)ta có
\(D\ge\left|x-2018+2017-x\right|=\left|-1\right|=1\)
Dấu '' = '' xảy ra \(\Leftrightarrow\left(2017-x\right)\left(x-2018\right)\ge0\Leftrightarrow2018\ge x\ge2017\)
A= 3x2 - 2x + 3
= 3(x2- 2/3x + 1/9 ) + 8/3
= 3(x-1/3)2 + 8/3 > 8/3 \(\forall\)x
dấu ''='' xảy ra <=> x = 1/3
/HT\
Nhầm đề rồi mấy bạn trả lời
Bảo là giá trị nguyên của ,\(\frac{2x-3}{3x+2}\) , các bạn ghi là \(3x^2-2x+3\)rồi
HT
A=3x-17/4-x
=>(-1)A=17-3x/4-x
=>(-1)A=12-3x+5/4-x
=> (-1)A=3+(5/4-x)=>A=-3-(5/4-x)
Để A có GTNN=>-3-(5/4-x) có GTNN
=>5/4-x có GTLN
=>4-x có GTNN =>=>4-x=-5=>x=9
=>A=3.9-17/4-9
=>A=10/-5
=>A=-2
Vậy..........
1) Tìm x
a) |3x - 1| + |1 - 3x| = 6
<=> |3x - 1| + |3x - 1| = 6
<=> 2|3x - 1| = 6
=> |3x - 1| = 3
=> \(\orbr{\begin{cases}3x-1=3\\3x-1=-3\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{4}{3}\\x=-\frac{2}{3}\end{cases}}}\)
b) |2x - 1| + |1 - 2x| = 8
<=> |2x - 1| + |2x - 1| = 8
<=> 2|2x - 1| = 8
=> |2x - 1| = 4
=> \(\orbr{\begin{cases}2x-1=4\\2x-1=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{3}{2}\end{cases}}}\)
Ta có A= \(\frac{3x-17}{4-x}=\frac{3x-12-5}{4-x}\)\(=\frac{3x-12}{4-x}-\frac{5}{4-x}=-3-\frac{5}{4-x}\)
=>A \(< -3\)
=> Để A đạt Min => \(\frac{5}{4-x}\) phải đạt Max => \(4-x\)phải đạt Min
có B=4-x \(\le\)4
(lại có đk : 4-x \(\ne\)0=> x\(\ne4;\)/ 4-x\(>\)0 ( do nếu 4-x <0 => A>-3 => chắc chắn không đạt Min)và \(x\ge0\)(do nếu x<0 => B>4 ( B không đạt Min)
=> \(0< 4-x\le4\) mà x là giá trị nguyên => B có giá trị nhỏ nhất = 1
=> x=3
khi x= 3 => A=-8
Sai thì bảo lại mình nhé
\(M=\frac{2022x-2020}{3x+2}=\frac{2022x+1348-3368}{3x+2}\)
\(=674-\frac{336}{3x+2}\)
Bạn lập bảng là xog.
TL:
\(M=\frac{2022x-2020}{3x-2}=\frac{2022x+1348-3368}{3x-2}\)
\(=674-\frac{336}{3x+2}\)
_HT_
\(A\ge\left|3x+2+2018-3x\right|=2020\)
Lời giải:
Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
$A=|3x+2|+|3x-2018|=|3x+2|+|2018-3x|$
$\geq |3x+2+2018-3x|=2020$
Vậy GTNN của $A$ là $2020$. Giá trị này đạt tại $(3x+2)(2018-3x)\geq 0$
$\Leftrightarrow -\frac{2}{3}\leq x\leq \frac{2018}{3}$