K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2020

\(A=\left(2x-3\right)^2-\left(x-1\right)\left(x+5\right)+2\)

\(A=4x^2-12x+9-\left(x^2+5x-x-5\right)+2\)

\(A=4x^2-12x+9-x^2-4x+5+2\)

\(A=3x^2-12x+16\)

\(A=3\left(x^2-4x+4\right)\)

\(A=3\left(x-2\right)^2\ge0\)

Dấu bằng xảy ra \(\Leftrightarrow x=2\)

26 tháng 10 2020

\(A=\left(2x-3\right)^2-\left(x-1\right)\left(x+5\right)+2\)

\(=4x^2-12x+9-\left(x^2+4x-5\right)+2\)

\(=4x^2-12x+9-x^2-4x+5+2\)

\(=3x^2-16x+16\)

\(=3\left(x^2-\frac{16}{3}x+16\right)\)

\(=3\left(x^2-2\cdot\frac{8}{3}\cdot x+\frac{64}{9}+\frac{80}{9}\right)\)

\(=3\left(x-\frac{8}{3}\right)^2+\frac{80}{3}\ge\frac{80}{3}\)

dấu = xảy ra \(\Leftrightarrow x-\frac{8}{3}=0\)

\(\Leftrightarrow x=\frac{8}{3}\)

vậy...

20 tháng 3 2020

\(A=a^4-2a^3+3a^2-4a+5\)

\(\Leftrightarrow A=a^4-2a^3+a^2+2a^2-4a+2+3\)

\(\Leftrightarrow A=\left(a^4-2a^3+^2\right)+2\left(a^2-2a+1\right)+3\)

\(\Leftrightarrow A=\left(a^2-a\right)^2+2\left(a-1\right)^2+3\)

Có:\(\hept{\begin{cases}\left(a^2-a\right)^2\ge0\forall x\\2\left(a-1\right)^2\ge0\forall x\end{cases}}\)

\(\Rightarrow A\ge3\). Dấu "=" \(\Leftrightarrow\hept{\begin{cases}a^2-a=0\\a-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}a^2=a\\a=1\end{cases}}}\)

Vậy Min A=3 đạt được khi a=1

Nguồn: DORAEMON (lazi.vn)

22 tháng 3 2020

Câu hỏi của Edogawa Conan - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo.

10 tháng 7 2018

I=(2x-1)^2+(x-3)^2

=4x^2-4x+1+x^2-6x+9

=5x^2-10x+10

=5(x^2-2x+1)+5

=5(x-1)^2+5

Vì 5(x-1)^2>=0 với mọi x nên I= 5(x-1)^2+5>=5 với mọi x

Dấu bằng xảy ra khi:(x-1)^2=0

                              x-1=0

                              x=1

Vậy GTNN cua biểu thức T=5 khi x=1

c,M=(x-2)(x-5)(x^2-7x+10)

=(x^2-7x+10)^2

Vì M=(x^2-7x+10)^2>=0 với mọi x nên dấu bằng xảy ra khi:

x^2-7x+10=0

(x-2)(x-5)=0

Suy ra:x=2 hoặc x=5

Vậy GTNN của M là 0 tại x=2 hoặc x=5

d,T=(4x^2+ 8xy+4y^2)+(x^2 -2x+1)+(y^2+2y+1) -2

=4(x^2+2xy+y^2)+ (x-1)^2+ (y+1)^2 -2

=4(x+y)^2 +(x-1)^2 +(y+1)^2 -2

bạn tự lập luận 4(x+y)^2 +(x-1)^2 +(y+1)^2 -2 >=-2 với mọi x

Dấu = xảy ra khi:x=1,y=-1

Vậy GTNN của T là -2 tại x=1,y=-1

b,ý b dễ rồi mình cho bạn đáp án

GTNN cua N là 1 tại x=0

GTNN là giá trị nhỏ nhất.Chúc bạn học tốt

17 tháng 12 2020

A = 2x2 - 5x + 2

= 2( x2 - 5/2x + 25/16 ) - 9/8

= 2( x - 5/4 )2 - 9/8 ≥ -9/8 ∀ x

Đẳng thức xảy ra <=> x = 5/4

=> MinA = -9/8, đạt được khi x = 5/4

17 tháng 12 2020

\(A=2x^2-5x+2\)

\(=2\left(x^2-\frac{5}{2}x+1\right)\)

\(=2\left(x^2-2x\frac{5}{4}+\frac{25}{16}\right)-\frac{9}{8}\)

\(=2\left(x-\frac{5}{4}\right)^2-\frac{9}{8}\ge-\frac{9}{8}\forall x\)

Dấu"=" xảy ra khi  \(x-\frac{5}{4}=0\Rightarrow x=\frac{5}{4}\)

Vậy \(Min_A=-\frac{9}{8}\Leftrightarrow x=\frac{5}{4}\)

13 tháng 2 2015

A=x^2+2x+1+x^2-6x+9

A=2x^2-4x+10

A=2(X^2-2x+5)

A=2(x^2-2x+1+4)

A=2((x-1)^2+4)

A=2(x-1)^2+8

      Vì (x-1)^2>=0

      =>2(x-1)^2>=0

=>A=2(x-1)^2+8>=8 Với mọi giá trị của x

Để A có giá trị nhỏ nhất khi 2(x-1)^2 nhỏ nhất khi đó:

        2(x-1)^2=0

     =>(x-1)^2=0

    =>x-1=0

     =>x=1 

      Vậy Amin=8 Khi x=1

Đúng ko bạn nhỉ?