Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:B=(x-1/x+2)+(2-5x/4-x^2)
=[(x-1)*(x-2)/(x+2)-(2-5x)/(x-2)*(x+2)]
=(x^2+2x)/(x-2)*(x+2)
=x/(x-2)
=> 5B=5x/(x-2)
=>A-5B = (x^3+2/x-2)-(5x/x-2)=x^3-5x+2/x-2=(x-2)*(x^2+2x-1)/(x-2)=x^2+2x-1=(x+1)^2-2
vì (x+1)^2>= 0
=> A-5B= (x+1)^2-2>= -2
Dấu `=' xảu ra<=> (x+1)^2 =0
=>x=-1
vậy GTNN của P=-2 <=> x=-1
\(B=\dfrac{\left(x-2\right)\left(x-3\right)\left(x-1\right)\left(x-4\right)}{\left(x-4\right)\left(x-3\right)}=\left(x-2\right)\left(x-1\right)\)
\(B=x^2-3x+2=\left(x-\dfrac{3}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)
\(B_{min}=-\dfrac{1}{4}\) khi \(x=\dfrac{3}{2}\)
\(B=\dfrac{\left(x-3\right)\left(x-2\right)\left(x-4\right)\left(x-1\right)}{\left(x-4\right)\left(x-3\right)}=\left(x-2\right)\left(x-1\right)=x^2-3x+2=\left(x-\dfrac{3}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)
với mọi x.
\(B_{min}=-\dfrac{1}{4}\) tại \(x=\dfrac{3}{2}\)
A = x2 + 5x
= x2 + 2.\(\frac{5}{2}\)x + \(\frac{25}{4}\) - \(\frac{25}{4}\)
= (x + \(\frac{5}{2}\))2 - \(\frac{25}{4}\)
Vi (x + \(\frac{5}{2}\))2 >= 0
(x + \(\frac{5}{2}\))2 _\(\frac{25}{4}\)>= \(\frac{-25}{4}\)
Dau "=" xay ra <=> x + \(\frac{5}{2}\)= 0
<=> x = \(\frac{-5}{2}\)
Vay GTNN cua A la \(\frac{-25}{4}\)khi x = \(\frac{-5}{2}\)
\(A=x^2-2.\dfrac{5}{2}x+\dfrac{25}{4}-\dfrac{9}{4}=\left(x-\dfrac{5}{2}\right)^2-\dfrac{9}{4}\ge-\dfrac{9}{4}\)
\(A_{min}=-\dfrac{9}{4}\) khi \(x=\dfrac{5}{2}\)
\(A=x^2-5x+4\)
\(\Leftrightarrow A=x^2-2.x.\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2-\dfrac{9}{4}\)
\(\Leftrightarrow A=\left(x-\dfrac{5}{2}\right)^2-\dfrac{9}{4}\ge-\dfrac{9}{4}\)
Dấu bằng xảy ra
\(\Leftrightarrow x-\dfrac{5}{2}=0\)
\(\Leftrightarrow x=\dfrac{5}{2}\)