Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt{\left(x-3\right)-2\sqrt{x-3}+1+2}=\sqrt{\left[\left(x-3\right)-1\right]^2+2}\)
\(=\sqrt{\left(x-4\right)^2+2}\ge\sqrt{2}\)
GTNN CỦA A=CĂN 2 TẠI X=4
\(B=2.\sqrt{x^2+3x+\frac{9}{4}+\frac{11}{4}}=2.\sqrt{\left(x+\frac{3}{2}\right)^2+\frac{11}{4}}=\sqrt{4.\left(x+\frac{3}{2}\right)^2+11}\ge\sqrt{11}\)
GTNN CỦA B=CĂN 11 TẠI X=-3/2
bài 2
\(A=\sqrt{-2x^2+7}\le\sqrt{7}\)
GTLN CỦA A=CĂN 7 TẠI X=0
\(B=1+\sqrt{-\left(x^2-6x+7\right)}=1+\sqrt{-\left(x-3\right)^2+2}\)
để B lớn nhất thì \(\sqrt{-\left(x-3\right)^2+2}\) lớn nhất
mà\(\sqrt{-\left(x-3\right)^2+2}\le2\)
=> GTLN CỦA B=1+2 =3 TẠI X=3
\(C=7+\sqrt{-4\left(x^2-x\right)}=7+\sqrt{-4\left(x-\frac{1}{2}\right)^2+1}\le7+1=8\)
GTLN là 8 tại x=1/2
ĐK: \(x\ge0\)
+) Với x = 0 => A = 0
+) Với x khác 0
Ta có: \(\frac{1}{A}=\frac{3}{4}\sqrt{x}-\frac{3}{4}+\frac{3}{4\sqrt{x}}=\frac{3}{4}\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)-\frac{3}{4}\ge\frac{3}{4}.2-\frac{3}{4}=\frac{3}{4}\)
=> \(A\le\frac{4}{3}\)
Dấu "=" xảy ra <=> \(\sqrt{x}=\frac{1}{\sqrt{x}}\)<=> x = 1
Vậy max A = 4/3 tại x = 1
Còn có 1 cách em quy đồng hai vế giải đenta theo A thì sẽ tìm đc cả GTNN và GTLN
\(A=5-\sqrt{x+\sqrt{x}+1}\)
ĐK: \(x\ge0\)
=> \(x+\sqrt{x}\ge0\)
=> \(x+\sqrt{x}+1\ge1\)
=> \(\sqrt{x+\sqrt{x}+1}\ge1\)
=> \(-\sqrt{x+\sqrt{x}+1}\le1\)
Do đó: \(A\le4\)
Dấu "=" xảy ra khi x=0
\(B=\frac{3x+6\sqrt{x}}{x+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}+2}+\frac{\sqrt{x}+3}{1-\sqrt{x}}\left(ĐK:x\ge0;x\ne1\right)\)
\(=\frac{3x+6\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\frac{\sqrt{x}+1}{\sqrt{x}+2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}\)
\(=\frac{3x+6\sqrt{x}-\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}+2\right)^2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{3x+6\sqrt{x}-x+1-x-4\sqrt{x}-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{x+2\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+3}{\sqrt{x}+2}\ge\frac{3}{2}\)
Dấu "=" xảy ra khi x=0
a)A= \(5-\sqrt{x+\sqrt{x}+1}\). ĐKXĐ: \(x\ge0\)
Ta luôn có: \(x+\sqrt{x}\ge0\) với \(x\ge0\)
\(\Rightarrow x+\sqrt{x}+1\ge1\)
\(\Rightarrow\sqrt{x+\sqrt{x}+1}\ge1\)
\(\Rightarrow-\sqrt{x+\sqrt{x}+1}\le-1\)
\(\Rightarrow5-\sqrt{x+\sqrt{x}+1}\le4\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
Vậy GTLN của A=4 khi x=0
b) B= \(\frac{3x+6\sqrt{x}}{x+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}+2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}\). ĐKXĐ: \(x\ge0; x\ne1\)
= \(\frac{3x+6\sqrt{x}-\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}+2\right)^2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
= \(\frac{3x+6\sqrt{x}-x+1-x-4\sqrt{x}-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\) = \(\frac{x+2\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
= \(\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\) = \(\frac{\sqrt{x}+3}{\sqrt{x}+2}=\frac{\left(\sqrt{x+2}\right)+1}{\sqrt{x+2}}\)
= \(\frac{\sqrt{x}+2}{\sqrt{x}+2}+\frac{1}{\sqrt{x}+2}=1+\frac{1}{\sqrt{x}+2}\)
Ta luôn có: \(\sqrt{x}+2\ge2\) với \(x\ge0; x\ne1\)
\(\Rightarrow\frac{1}{\sqrt{x}+2}\le\frac{1}{2}\)
\(\Rightarrow1+\frac{1}{\sqrt{x}+2}\le\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
Vậy GTLN của B=\(\frac{3}{2}\) khi x=0
Để mình chứng minh là đề bạn sai nhé
Điều kiện xác định
\(\hept{\begin{cases}2x-1\ge0\\2x-3x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge0,5\\x\le0\end{cases}}\)vô lý
Từ điều kiện xác định đã thấy đề sai rồi
2. \(P=x^2-x\sqrt{3}+1=\left(x^2-x\sqrt{3}+\frac{3}{4}\right)+\frac{1}{4}=\left(x-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)
Dấu '=' xảy ra khi \(x=\frac{\sqrt{3}}{2}\)
Vây \(P_{min}=\frac{1}{4}\)khi \(x=\frac{\sqrt{3}}{2}\)
3. \(Y=\frac{x}{\left(x+2011\right)^2}\le\frac{x}{4x.2011}=\frac{1}{8044}\)
Dấu '=' xảy ra khi \(x=2011\)
Vây \(Y_{max}=\frac{1}{8044}\)khi \(x=2011\)
4. \(Q=\frac{1}{x-\sqrt{x}+2}=\frac{1}{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{7}{4}}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{4}{7}\)
Dấu '=' xảy ra khi \(x=\frac{1}{4}\)
Vậy \(Q_{max}=\frac{4}{7}\)khi \(x=\frac{1}{4}\)