Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-1\right)\\ =\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}-1}\right)\\ =\dfrac{\sqrt{x}+1+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}-1}\\ =\dfrac{2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{1}\\ =\dfrac{2\sqrt{x}+1}{\sqrt{x}+1}\)
1) Tại x = 16 thì:
\(A=\frac{2\sqrt{16}+1}{16+\sqrt{16}+1}=\frac{9}{21}=\frac{3}{7}\)
2) Ta có:
\(P=\left(\frac{1}{\sqrt{x}-1}-\frac{\sqrt{x}}{1-x}\right)\div\left(\frac{\sqrt{x}}{\sqrt{x}-1}-1\right)\)
\(P=\frac{\sqrt{x}+1+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\div\frac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}-1}\)
\(P=\frac{2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\left(\sqrt{x}-1\right)\)
\(P=\frac{2\sqrt{x}+1}{\sqrt{x}+1}\)
3) Ta có: \(M=\frac{P}{A}=\frac{\frac{2\sqrt{x}+1}{\sqrt{x}+1}}{\frac{2\sqrt{x}+1}{x+\sqrt{x}+1}}=\frac{x+\sqrt{x}+1}{\sqrt{x}+1}=\frac{x}{\sqrt{x}+1}+1\ge1\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(x=0\)
Vậy Min(M) = 1 khi x = 0
\(A=\frac{\left(1+\sqrt{x}\right)^2-4\sqrt{x}}{\sqrt{x}-1}\) \(\left(x\ge0;x\ne1\right)\)
\(A=\frac{x+2\sqrt{x}+1-4\sqrt{x}}{\sqrt{x}-1}=\frac{x-2\sqrt{x}+1}{\sqrt{x}-1}=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}=\sqrt{x}-1\)
và \(B=\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{2}}+\frac{2+\sqrt{2}}{\sqrt{x}+1}\)
\(B=\frac{\sqrt{3}\left(\sqrt{3}+2\right)}{\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{2}}+\frac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}\)
\(B=\sqrt{3}+2+\frac{1}{\sqrt{3}-\sqrt{2}}+\sqrt{2}\)
\(B=\sqrt{3}+\sqrt{2}+\frac{1}{\sqrt{3}-\sqrt{2}}+2\)
\(B=\frac{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)+1}{\sqrt{3}-\sqrt{2}}+2\)
\(B=\frac{3-2+1}{\sqrt{3}-\sqrt{2}}+2\)
\(B=\frac{2}{\sqrt{3}-\sqrt{2}}+2\)
để A = B thì \(\sqrt{x}-1\)= \(\frac{2}{\sqrt{3}-\sqrt{2}}+2\)
\(\sqrt{x}=\frac{2}{\sqrt{3}-\sqrt{2}}+3\)
\(\sqrt{x}=\frac{2\left(\sqrt{3}+\sqrt{2}\right)}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}+3\)
\(\sqrt{x}=2\sqrt{3}+2\sqrt{2}+3\)
tới bước này tui bí :(( mong các bạn giỏi khác giúp bạn :D
Ta có :A=\(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\) -\(\dfrac{2\sqrt{x}-2}{\sqrt{x}-1}\)
=\(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\)-2
=\(\dfrac{-\sqrt{x}}{\sqrt{x}+1}\)
thay vào A=\(\dfrac{-2}{3}\)
b)
A=-1+\(\dfrac{1}{\sqrt{x}+1}\) \(\ge\) -1+\(\dfrac{1}{1}\)=1(vì \(\sqrt{x}\)\(\ge\) 0)
Dấu bằng xẩy ra\(\Leftrightarrow\) x=0
chỗ đó cho thêm x-1 nha
đấu >= thay thành <= rùi nhân thêm x-1>=-1 nữa là lớn nhất bằng 0
E mới 7 - 8 thui !!! nhưng e sẽ cố giúp
a) \(A=\frac{\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(x-1\right)}{\left(x-1\right)\left(x+2\sqrt{x}+1\right)}.\frac{1-x^2}{2}\)
\(=\frac{x\sqrt{x}-3\sqrt{x}-2-x\sqrt{x}+\sqrt{x}-2x+2}{\left(x-1\right)\left(\sqrt{x}+1\right)^2}.\frac{1-x^2}{2}\)
\(=\frac{-2\sqrt{x}-2x}{\left(x-1\right)\left(\sqrt{x}+1\right)^2}.\frac{1-x^2}{2}\)
\(=\frac{-2\sqrt{x}\left(\sqrt{x}+1\right)}{\left(x-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(1-x\right)\left(x+1\right)}{2}\)
\(=\frac{2\left(\sqrt{x}+1\right)\left(x-1\right)\left(x+1\right)\sqrt{x}}{2\left(\sqrt{x}+1\right)\left(x-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}\left(x+1\right)}{\sqrt{x}+1}\)
b )
ĐKXĐ : \(x\ge0\)
Vì \(\sqrt{x}+1>0\forall x\) Để \(A=\frac{\sqrt{x}\left(x+1\right)}{\sqrt{x}+1}>0\) \(\Leftrightarrow\sqrt{x}\left(x+1\right)>0\)
\(\Rightarrow\hept{\begin{cases}\sqrt{x}\ne0\\x+1>0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne0\\x>-1\end{cases}}}\) Mà theo đxxd thì \(x\ge0\) nên \(x>0\)
Vậy với \(x>0\) thì \(A>0\)
c ) Lớp 7 chưa bt làm :((
E ghi rõ nèk
\(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\)
\(=\frac{\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+1\right)-\left(x-1\right)\left(\sqrt{x}+2\right)}{\left(x-1\right)\left(x+2\sqrt{x}+1\right)}\)
\(=\frac{\left(x\sqrt{x}+2x+\sqrt{x}-2x-4\sqrt{x}-2\right)-\left(x\sqrt{x}+2x-\sqrt{x}-2\right)}{\left(x-1\right)\left(x+2\sqrt{x}+1\right)}\)
\(=\frac{x\sqrt{x}-3\sqrt{x}-2-x\sqrt{x}-2x+\sqrt{x}-2}{\left(x-1\right)\left(x+2\sqrt{x}+1\right)}\)
Ta có:
\(P=\frac{x+12}{\sqrt{x}+2}=\sqrt{x}-2+\frac{16}{\sqrt{x}+2}\)
\(=\left(\sqrt{x}+2\right)+\frac{16}{\sqrt{x}+2}-4\ge2\sqrt{\left(\sqrt{x}+2\right).\frac{16}{\sqrt{x}+2}}-4=4\)
Dấu "=" xảy ra <=> \(\sqrt{x}+2=\frac{16}{\sqrt{x}+2}\Leftrightarrow\sqrt{x}+2=4\Leftrightarrow x=4\) thỏa mãn
=> min P = 4 tại x = 4.
\(C=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{x-1}\)
\(C=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(C=\frac{\sqrt{x}\left(\sqrt{x}+1\right)-2\left(\sqrt{x}-1\right)-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(C=\frac{x+\sqrt{x}-2\sqrt{x}+2-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(C=\frac{\sqrt{x}\left(\sqrt{x}+1-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(C=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(C=\frac{\sqrt{x}}{\sqrt{x}+1}\)
P/s tham khảo nha
\(A=\frac{x-4\sqrt{x}+4+4\left(\sqrt{x}+3\right)}{\sqrt{x}+3}=\frac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}+3}+4\ge4\)
Vậy GTNN của A là 4 khi x = 4.