\(\left(\sqrt{x}\right)+2\left(\sqrt{2-x}\right)\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2016

ui mk nhầm chỗ cuối kết quả A=2 nhé

22 tháng 6 2016

bài 1 

a) ĐKXĐ : bạn tự tìm nhé 

b) ta có A=\(\sqrt{x^2-1+2\sqrt{x^2-1}+1}-\sqrt{x^2-1-2\sqrt{x^2-1}+1}\)

               =\(\sqrt{\left(\sqrt{x^2-1}+1\right)^2}+\sqrt{\left(\sqrt{x^2-1}-1\right)^2}\)

               =\(\left|\sqrt{x^2-1}+1\right|+\left|\sqrt{x^2-1}-1\right|\)

              =\(\sqrt{x^2-1}+1+\sqrt{x^2-1}-1\)( vì \(\left|x\right|\ge\sqrt{2}\))

              =\(2\sqrt{x^2-1}\)     

1 tháng 5 2018

C = ..................................................................... ( giống cái đề bài )

   = ( x + 2017 ) + ( x + 2018 ) + ( x + 2019 )

   = ( x + x + x )  + ( 2017 + 2018 + 2019 )

   = 3x + 6054

Vì ( x + 2017 ) là căn bậc 2 của ( x+2017 )^2 => x+2017 > hoặc = 0

    ( x + 2018 ) ........................... ( x+2018)^2 => x+2018 > hoặc = 0

     ( x + 2019) ............................( x+2019 )^2 => x+2019 > hoặc = 0

SUY RA ( x+2017 ) + ( x+2018 ) + ( x+2019 ) > hoặc = 0 => 3x + 6054 > hoặc = 0

dấu đẳng thức xảy ra <=> 3x + 6054 = 0 <=> 3x = - 6054 <=> x = - 2018

Vậy C có GTNN là 0 khi x = - 2018

22 tháng 9 2017

\(\Leftrightarrow\)A=\(\left|x-2010\right|+\left|x-2011\right|\)=\(\left|x-2010\right|+\left|2011-x\right|\)\(\ge\)\(\left|x-2010+2011-x\right|\)=1

Dấu ''='' xảy ra khi và chỉ khi \(\hept{\begin{cases}x-2010\ge0\\2011-x\ge0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\ge2010\\x\le2011\end{cases}}\)\(\Leftrightarrow\)\(2010\le x\le2011\)

Vậy Min A =1 \(\Leftrightarrow2010\le x\le2011\)

22 tháng 9 2017

chịu !!!

5 tháng 9 2017

ko biet

7 tháng 10 2020

Tìm giá trị lớn nhất: Áp dụng \(\left|a+b\right|\le\left|a\right|+\left|b\right|\)được: \(A\le\left|x\right|+\sqrt{2}+\left|y\right|+1=6+\sqrt{2}\)

Max A = \(6+\sqrt{2}\)khi chẳng hạn x=-2,y=-3

Tìm giá trị nhỏ nhất: Áp dụng \(\left|a-b\right|\ge\left|a\right|-\left|b\right|\)được: \(A\ge\left|x\right|-\sqrt{2}+\left|y\right|-1=4-\sqrt{2}\)

Min A=\(4-\sqrt{2}\)khi chẳng hạn x=2,y=3

7 tháng 10 2020

Mình cảm ơn bạn nhiều ạ <3

NM
20 tháng 3 2021

\(P=\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{2\left(\sqrt{x}+1\right)-2+x}{x\left(\sqrt{x}+1\right)}\right)\)

\(\Leftrightarrow P=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{x\left(\sqrt{x}+1\right)}=\frac{x}{\sqrt{x}-1}\)

b. ta có \(x=\frac{8-4\sqrt{3}}{2-\sqrt{3}}=4\)

vậy \(P=\frac{4}{\sqrt{4}-1}=4\)

c.\(P=\frac{x}{\sqrt{x}-1}=\sqrt{x}-1+\frac{1}{\sqrt{x}-1}+2\ge2+2=4\)

vậy \(\sqrt{P}\ge2\)

18 tháng 1 2017

Ở giữa là nhân hay cộng vậy bạn.

Nếu là nhân thì min bằng 0 vì đây là tích 2 số không âm.

Nếu là cộng: \(A=\left|x+2011\right|+\left|2012-x\right|\ge\left|2011+2012\right|=4023\)

và đẳng thức xảy ra, chẳng hạn khi \(x=2012\)

19 tháng 1 2017

Đề không rõ ràng này tốt nhất thôi A à.

tý nữa lại sủa, tẹo nữa keo nhầm, kết luận làm được rồi không phải giải nữa.

A mới đưa ra được (.);(+) còn chia(/) và (-) nữa