Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm GTNN
Ta có: A = |x - 1| + |x - 4|
=> A = |x - 1| + |4 - x| \(\ge\)|x - 1 + 4 - x| = |3| = 3
=> A \(\ge\)3
Dấu "=" xảy ra <=> (x - 1)(x - 4) \(\ge\)0
<=> \(1\le x\le4\)
Vậy Min A = 3 <=> \(1\le x\le4\)
Tìm GTLN
Ta có: -|x + 2| \(\le\)0 \(\forall\)x
hay A \(\le\)0 \(\forall\)x
Dấu "=" xảy ra <=> x + 2 = 0 <=> x = -2
Vậy Max A = 0 <=> x = -2
bài 1 :
a) vì x + 1,5 luôn lớn hơn hoặc bằng 0 mà để x+1,5 đạt giá trị nhỏ nhất => x + 1,5 = 0=> x=-1,5
b) vì x- 2 luôn lớn hơn hoặc bằng 0 mà để x-2 - 9,10 đạt gtri nhỏ nhất => x- 2 = 0=> x=2
Câu 1 : Bài giải
a, \(\text{ }\text{Do }\left|x+1,5\right|\ge0\) Dấu " = " xảy ra khi \(x+1,5=0\text{ }\Rightarrow\text{ }x=-1,5\)
\(\Rightarrow\text{ }Min\text{ }\left|x+1,5\right|=0\text{ khi }x=-1,5\)
b, \(\left|x-2\right|-9,10\) đạt GTNNN khi \(\left|x-2\right|\) đạt GTNN
Mà \(\left|x-2\right|\ge0\)Dấu " = " xảy ra khi \(x-2=0\) \(\Rightarrow\text{ }x=2\)
\(\Rightarrow\text{ }\left|x-2\right|-9,10\ge-9,10\)
\(\text{Vậy }Min\text{ }\left|x-2\right|-9,10=-9,10\text{ khi }x=2\)
Câu 2 : Bài giải
a, Do \(-\left|2x-1\right|\le0\) Dấu " = " xảy ra khi \(-\left|2x-1\right|=0\text{ }\Rightarrow\text{ }2x-1=0\text{ }\Rightarrow\text{ }x=\frac{1}{2}\)
Vậy \(Max\text{ }-\left|2x-1\right|=0\text{ khi }x=\frac{1}{2}\)
b, Do \(4-\left|5x+3\right|\le4\text{ }\)
Dấu " = " xảy ra khi \(4-\left|5x+3\right|=4\text{ }\Rightarrow\text{ }\left|5x+3\right|=0\text{ }\Rightarrow\text{ }5x+3=0\text{ }\Rightarrow\text{ }x=-\frac{3}{5}\)
\(\text{Vậy }Max\text{ }4-\left|5x+3\right|=4\text{ khi }x=-\frac{3}{5}\)
c, \(\frac{1}{8}-\left|x+3\right|\le\frac{1}{8}\) Dấu " = " xảy ra khi \(\frac{1}{8}-\left|x+3\right|=\frac{1}{8}\text{ }\Rightarrow\text{ }\left|x+3\right|=0\text{ }\Rightarrow\text{ }x+3=0\text{ }\Rightarrow\text{ }x=-3\)
\(\text{Vậy }Max\text{ }\frac{1}{8}-\left|x+3\right|=\frac{1}{8}\text{ khi }x=-3\)
Vì \(-|x+5|\le0;\forall x\)
\(\Rightarrow3,5-|x+5|\le3,5-0;\forall x\)
\(\Rightarrow\frac{1}{3,5-|x+5|}\ge\frac{1}{3,5};\forall x\)
Hay \(E\ge\frac{1}{3,5};\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow|x+5|=0\)
\(\Leftrightarrow x=-5\)
Vậy MIN \(E=\frac{1}{3,5}\Leftrightarrow x=-5\)
2.
a/\(A=5-I2x-1I\)
Ta thấy: \(I2x-1I\ge0,\forall x\)
nên\(5-I2x-1I\le5\)
\(A=5\)
\(\Leftrightarrow5-I2x-1I=5\)
\(\Leftrightarrow I2x-1I=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)
b/\(B=\frac{1}{Ix-2I+3}\)
Ta thấy : \(Ix-2I\ge0,\forall x\)
nên \(Ix-2I+3\ge3,\forall x\)
\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)
\(B=\frac{1}{3}\)
\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)
\(\Leftrightarrow Ix-2I+3=3\)
\(\Leftrightarrow Ix-2I=0\)
\(\Leftrightarrow x=2\)
Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)
Đáy lớn là
26 + 8 = 34 M
chIỀU CAO là
26 - 6 = 20 m
Diện tích thửa ruộng là
{ 34 + 26 } x 20 : 2 = 800 m2
Đáp số 800 m2
1.Để H đạt GTLN
=>|8x+16|+1 đạt giá trị dương nhỏ nhất
=>|8x+16|+1=1
=>MaxH=1
Dấu "=" xảy ra khi x=-2
Vậy...
-|x+5|<=0 với mọi x
=>3,5-|x+5|<=3,5
=>E>=1/3,5=1:7/2=2/7
dấu "=" xảy ra khi và chỉ khi x+5=0
=>x=-5
vậy GTNN của E=2/7 tại x=-5
a) Vì \(\left|4x-2\right|\ge0\forall x\)\(\Rightarrow\left|4x-2\right|+1\ge1\forall x\)
hay \(A\ge1\)
Dấu " = "xảy ra \(\Leftrightarrow4x-2=0\)\(\Leftrightarrow4x=2\)\(\Leftrightarrow x=\frac{1}{2}\)
Vậy \(minA=1\)\(\Leftrightarrow x=\frac{1}{2}\)
b) \(B=\left|x-2020\right|+\left|x-1\right|=\left|x-2020\right|+\left|1-x\right|\)
\(\Rightarrow B\ge\left|x-2020+1-x\right|=\left|-2019\right|=2019\)
Dấu " = " xảy ra \(\Leftrightarrow\left(x-2020\right)\left(1-x\right)\ge0\)
TH1: \(\hept{\begin{cases}x-2020\le0\\1-x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le2020\\1\le x\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le2020\\x\ge1\end{cases}}\Leftrightarrow1\le x\le2020\)
TH2: \(\hept{\begin{cases}x-2020\ge0\\1-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge2020\\1\ge x\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge2020\\x\le1\end{cases}}\)( vô lý )
Vậy \(minB=2019\)\(\Leftrightarrow1\le x\le2020\)
câu a) đề sai sai ,sửa đề : A = 4|x-2| + 1
a) A =4| x-2| + 1
Ta có : |x-2| min =0 khi x = 2
<=> 4|x-2| min = 0 khi x = 2
<=> ( 4 | x-2| + 1 )min =1 khi x = 2
Vậy Min của A = 1 ,khi x = 2
b) B= | x-2020| +| x-1| x
Ta có với mọi x , y \(\inℚ\)thì | x | + | y| \(\ge\left|x+y\right|\)với điều kiện x , y \(\ge0\)
Có B = | x - 2020 | + | x - 1 |
= | x - 2020 | + | 1 - x | \(\ge\left|x-2020+1-x\right|\)
= | - 2019 | = 2019
Vậy Min B = 2019 khi \(1\le x\le2020\)
Nếu đề a) ko sai thì chat riêng với mình nhé ,bạn chỉ cần dịch nhẹ chuột đến tên nik của mình ,xong nhấn nhắn tin là được !!!
\(Tacó:\left(x-3.5\right)^2\ge0\)
Cộng cả 2 vế cho 1 ta được :
\(\left(x-3.5\right)^2+1\ge1\)
Đẳng thức xảy ra khi và chỉ khi \(x=3.5\)
Vậy Min = 1 khi x=3.5
Trả lời:
a, \(\left(x-3,5\right)^2+1\)
Ta có: \(\left(x-3,5\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-3,5\right)^2+1\ge1\)
Dấu "=" xảy ra \(\Leftrightarrow x-3,5=0\)
\(\Leftrightarrow x=3,5\)
Vậy GTNN của biểu thức a là \(1\) khi \(x=3,5\)