K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DT
6 tháng 8 2022

\(A=x^2-x+\dfrac{1}{2}=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}\\ =\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\ge\dfrac{1}{4}\forall x\)

Dấu ''='' xảy ra khi : \(\left(x-\dfrac{1}{2}\right)^2=0< =>x=\dfrac{1}{2}\)

Vậy GTNN của `A` là : `1/4<=>x=1/2`

18 tháng 9 2019

Câu 1: Tự làm :D

Câu 2: \(A=\left(x-y\right)^2+\left(y-2\right)^2+1\ge1\)

Đẳng thức xảy ra khi x = y = 2

Vậy...

Câu 3:

a) Trùng với câu 2

b) ĐK:x khác -1

\(B=\frac{3\left(x+1\right)}{x^2\left(x+1\right)+\left(x+1\right)}=\frac{3\left(x+1\right)}{\left(x^2+1\right)\left(x+1\right)}\)

\(=\frac{3}{x^2+1}\le\frac{3}{0+1}=3\)

Đẳng thức xảy ra khi x = 0

18 tháng 9 2019

Làm nốt cái câu 1 và đầy đủ cái câu 2:v

\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)

Làm nốt nha.Lười quá:((

2

\(A=x^2-2xy+2y^2-4y+5\)

\(A=\left(x-2xy+y^2\right)+\left(y^2-4y+4\right)+1\)

\(A=\left(x-y\right)^2+\left(y-2\right)^2+1\)

\(A\ge1\)

Dấu "=" xảy ra tại \(x=y=2\)

11 tháng 9 2016

Bài 1:

\(M=\left|x+13\right|+64\)

Vì \(\left|x+3\right|\ge0\)

=> \(\left|x+3\right|+64\ge64\)

Vậy GTNN của M là 64 khi x=-13

\(A=\left|x+3\right|+\left|x+5\right|=\left|-\left(x+3\right)\right|+\left|x+5\right|\)

Áp dụng bđt \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) ta có:

\(A\ge\left|-x-3+x+5\right|=2\)

Vaayj GTNN của A là 2 khi \(-3\le x\le5\)

Bài 2:

a) \(\left(x+10\right)^2=0\)

\(\Leftrightarrow x+10=0\Leftrightarrow x=-10\)

b) \(\left(x-\sqrt{121}\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow x-\sqrt{121}=0\) (vì \(x^2+1>0\) )

\(\Leftrightarrow x=11\)

11 tháng 9 2016

Bài 1:

a)Ta thấy: \(\left|x+13\right|\ge0\)

\(\Rightarrow\left|x+13\right|+64\ge64\)

\(\Rightarrow M\ge64\)

Dấu = khi x=-13

b)\(\left|x+3\right|+\left|x+5\right|=\left|x+3\right|+\left|-x-5\right|\)

Áp dụng Bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(\left|x+3\right|+\left|-x-5\right|\ge\left|x+3+\left(-x\right)-5\right|=2\)

\(\Rightarrow A\ge2\)

Dấu = khi \(\left(x+3\right)\left(x+5\right)\ge0\)\(\Rightarrow3\le x\le5\)

\(\Rightarrow\begin{cases}\left(x+3\right)\left(x+5\right)=0\\3\le x\le5\end{cases}\)\(\Rightarrow\)\(\begin{cases}x=-3\\x=-5\end{cases}\)

Vậy MinA=2 khi \(\begin{cases}x=-3\\x=-5\end{cases}\)

9 tháng 9 2019

\(A=x^2-3x+1=x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{5}{4}\)

\(=\left(x-\frac{3}{2}\right)^2-\frac{5}{4}\ge\frac{-5}{4}\)

Vậy GTNN của A là \(\frac{-5}{4}\)\(\Leftrightarrow x=\frac{3}{2}\)

9 tháng 9 2019

\(C=10x-x^2+2=-\left(x^2-10x-2\right)\)

\(=-\left(x^2-10x+25-27\right)=-\left[\left(x-5\right)^2-27\right]\)

\(=-\left(x-5\right)^2+27\le27\)

Vậy \(C_{max}=27\Leftrightarrow x=5\)

12 tháng 7 2017

a)

\(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\)

\(\Leftrightarrow\left(x^3+3x^2+3x+1\right)+\left(y^3+3y^2+3y+1\right)+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+1\right)^3+\left(y+1\right)^3+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\right]+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1\right]=0\)

Lại có :\(\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1=\left[\left(x+1\right)-\frac{1}{2}\left(y+1\right)\right]^2+\frac{3}{4}\left(y+1\right)^2+1>0\)

Nên \(x+y+2=0\Rightarrow x+y=-2\)

Ta có :

\(M=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=\frac{-2}{xy}\)

Vì \(4xy\le\left(x+y\right)^2\Rightarrow4xy\le\left(-2\right)^2\Rightarrow4xy\le4\Rightarrow xy\le1\)

\(\Rightarrow\frac{1}{xy}\ge\frac{1}{1}\Rightarrow\frac{-2}{xy}\le-2\)

hay \(M\le-2\)

Dấu "=" xảy ra khi \(x=y=-1\)

                    Vậy \(Max_M=-2\)khi \(x=y=-1\)

12 tháng 7 2017

c)  ( Mình nghĩ bài này cho x, y, z ko âm thì mới xảy ra dấu "=" để tìm Min chứ cho x ,y ,z dương thì ko biết nữa ^_^  , mình làm bài này với điều kiện x ,y ,z ko âm nhé )

Ta có :

\(\hept{\begin{cases}2x+y+3z=6\\3x+4y-3z=4\end{cases}\Rightarrow2x+y+3z+3x+4y-3z=6+4}\)

\(\Rightarrow5x+5y=10\Rightarrow x+y=2\)

\(\Rightarrow y=2-x\)

Vì \(y=2-x\)nên \(2x+y+3z=6\Leftrightarrow2x+2-x+3z=6\)

\(\Leftrightarrow x+3z=4\Leftrightarrow3z=4-x\)

\(\Leftrightarrow z=\frac{4-x}{3}\)

Thay \(y=2-x\)và \(z=\frac{4-x}{3}\)vào \(P\)ta có :

\(P=2x+3y-4z=2x+3\left(2-x\right)-4.\frac{4-x}{3}\)

\(\Rightarrow P=2x+6-3x-\frac{16}{3}+\frac{4x}{3}\)

\(\Rightarrow P=\frac{x}{3}+\frac{2}{3}\ge\frac{2}{3}\)( Vì \(x\ge0\))

Dấu "=" xảy ra khi \(x=0\Rightarrow\hept{\begin{cases}y=2\\z=\frac{4}{3}\end{cases}}\)( Thỏa mãn điều kiện y , z ko âm )

Vậy \(Min_P=\frac{2}{3}\)khi \(\hept{\begin{cases}x=0\\y=2\\z=\frac{4}{3}\end{cases}}\)

1 tháng 7 2018

\(A=x^2+5x+7\)

\(A=\left(x^2+5x+\frac{25}{4}\right)+\frac{3}{4}\)

\(A=\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x+\frac{5}{2}\right)^2=0\)

\(\Leftrightarrow\)\(x+\frac{5}{2}=0\)

\(\Leftrightarrow\)\(x=\frac{-5}{2}\)

Vậy GTNN của \(A\) là \(\frac{3}{4}\) khi \(x=\frac{-5}{2}\)

Chúc bạn học tốt ~ 

1 tháng 7 2018

\(B=6x-x^2-5\)

\(-B=x^2-6x+5\)

\(-B=\left(x^2-6x+9\right)-4\)

\(-B=\left(x-3\right)^2-4\ge-4\)

\(B=-\left(x-3\right)^2+4\le4\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(-\left(x-3\right)^2=0\)

\(\Leftrightarrow\)\(x-3=0\)

\(\Leftrightarrow\)\(x=3\)

Vậy GTLN của \(B\) là \(4\) khi \(x=3\)

Chúc bạn học tốt ~ 

2 tháng 2 2018

2, TC: \(\frac{5x^2-4x+4}{x^2}=\frac{4x^2+x^2-4x+4}{x^2}\)\(=\frac{4x^2}{x^2}+\frac{\left(x-2\right)^2}{x^2}=4+\frac{\left(x-2\right)^2}{x^2}\)

Ta có \(\frac{\left(x-2\right)^2}{x^2}\ge0\forall x\left(x\ne0\right)\)\(\Rightarrow4+\frac{\left(x-2\right)^2}{x^2}\ge4\)

Vậy GTNN của A là 4 tại \(\frac{\left(x-2^2\right)}{x^2}=0\Rightarrow x=2\)

AH
Akai Haruma
Giáo viên
15 tháng 9 2024

1/

Áp dụng BĐT Bunhiacopxky:

$(a^2+b^2+c^2)(1+1+1)\geq (a+b+c)^2$

$\Rightarrow 3(a^2+b^2+c^2)\geq 4$

$\Rightarrow a^2+b^2+c^2\geq \frac{4}{3}$

Vậy GTNN của biểu thức là $\frac{4}{3}$. Giá trị này đạt tại $a=b=c=\frac{2}{3}$

AH
Akai Haruma
Giáo viên
15 tháng 9 2024

2/

Áp dụng BĐT Cô-si:

$x+2007\geq 2\sqrt{2007x}$

$\Rightarrow (x+2007)^2\geq (2\sqrt{2007x})^2=8028x$

$\Rightarrow P=\frac{x}{(x+2007)^2}\leq \frac{x}{8028x}=\frac{1}{8028}$

Vậy $P_{\max}=\frac{1}{8028}$ khi $x=2007$