Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=|x-2011|+|x-200|
Vậy A đạt giá trị nhỏ nhất là
A=1811 với x={200;201;202;203;...2009;2010;2011}
theo đề bài ta có
A=|X-2011|+|X-200|=|X-2011|+|200-X| LỚN HƠN HOẶC BẰNG |X-2011+200-X| =2010
VẬY GTNN CỦA BIỂU THỨC LÀ 2000 khi X-2011 VÀ 200-X phải cung dau
Vì \(\left(x-\frac{1}{5}\right)^2\ge0\).Dấu "=" xảy ra khi \(x=\frac{1}{5}\)
\(\Rightarrow A=\left(x-\frac{1}{5}\right)^2+\frac{11}{15}\ge\frac{11}{15}\)
Nên GTNN của A là \(\frac{11}{15}\) xảy ra khi \(x=\frac{1}{5}\)
Ta có A=x - 3 - 5/x - 3
A=x - 3/x - 3 - 5/x - 3
A=1 - 5/x - 3
Đẻ A đạt giá trị nhỏ nhất<=>1 - 5/x - 3 cũng phải đạt giá trị nhỏ nhất
Mà 1>0=>để A đạt giá trị nhỏ nhất=>5/x - 3 phải lớn nhất nguyên dương
=>x - 3 phải là số bé nhất nguyên dương=1
Ta có:x - 3=1
x=1+3=4
Bài làm:
a) Ta có: \(A=\left|x-\frac{3}{4}\right|\ge0\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|x-\frac{3}{4}\right|=0\Rightarrow x=\frac{3}{4}\)
Vậy Min(A) = 0 khi x=3/4
b) Ta có: \(B=-\left|x+2020\right|\le0\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|x+2020\right|=0\Rightarrow x=-2020\)
Vậy Max(B) = 0 khi x = -2020
A = | x - 3/4 |
\(\left|x-\frac{3}{4}\right|\ge0\forall x\Rightarrow A\ge0\)
Dấu " = " xảy ra <=> x - 3/4 = 0 => x = 3/4
Vậy AMin = 0 , đạt được khi x = 3/4
B = - | x + 2020 |
\(\left|x+2020\right|\ge0\forall x\Rightarrow-\left|x+2020\right|\le0\forall x\)
\(\Rightarrow B\le0\)
Dấu " = " xảy ra <=> x + 2020 = 0 => x = -2020
Vậy BMax = 0, đạt được khi x = -2020
a) \(A=\left|x-5\right|+\left|x-7\right|=\left|x-5\right|+\left|7-x\right|\ge\left|x-5+7-x\right|=\left|2\right|=2\)
\(minA=2\Leftrightarrow\)\(7\ge x\ge5\)
b) \(B=\left|2x+1\right|+\left|2x-2\right|=\left|2x+1\right|+\left|2-2x\right|\ge\left|2x+1+2-2x\right|=\left|3\right|=3\)
\(minB=3\Leftrightarrow1\ge x\ge-\dfrac{1}{2}\)
Bài 2:
a) Ta có: \(\left|2x-5\right|\ge0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)
\(A=|x-2012|+|x-2013|=|x-2012|+|2013-x|\ge|x-2012+2013-x|=1\)
Dấu = xảy ra \(< =>2012\le x\le2013\)
\(|x-2012|+|x-2013|\)
\(=|x-2012|+|-\left(2013-x\right)|\)
\(=|x-2012|+|2013-x|\)
Ta có
\(|x-2012|+|2013-x|\ge|x-2012+2013-x|\)
\(|x-2012|+|2013-x|\ge1\)
Dấu = xảy ra
\(\Leftrightarrow\left(x-2012\right)\left(2013-x\right)\ge0\)
TH 1 :
\(\hept{\begin{cases}x-2012\ge0\\2013-x\le0\end{cases}}\)
\(\hept{\begin{cases}x\ge2012\\-x\ge-2013\end{cases}}\)
\(\hept{\begin{cases}x\ge2012\\x\le2013\end{cases}}\) \(\Rightarrow2012\le x\le2013\)
TH 2
\(\hept{\begin{cases}x-2012\le0\\2013-x\le0\end{cases}}\)
\(\hept{\begin{cases}x\le2012\\-x\le-2013\end{cases}}\)
\(\hept{\begin{cases}x\le2012\\x\ge2013\end{cases}}\) \(\Rightarrow x=\varnothing\)
Vậy min A = 1 khi và chỉ khi \(2012\le x\le2013\)
Ta có : \(\left|x-2011\right|\ge0;\left|x-200\right|\ge0\)
=>|x-2011|+|x-200|\(\ge0\)
=>A\(\ge0\)
Dấu bằng xảy ra <=> x-2011=0<=>x=2011
x-200=0<=>x=200
Vậy Amin=0<=>x\(\in\left\{2011;200\right\}\)