K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2017

Ta có : |a|+|b|≥|a+b||a|+|b|≥|a+b|

Áp dụng vào bài toán |x−2001|+|1−x| ≥ |x−2001+1−x|=2000|x−2001|+|1−x| ≥ |x−2001+1−x|=2000

Dấu bằng xảy ra khi (1−x)(x−2001) ≥ 0

22 tháng 12 2017

Ta có : / 2001 - x / + / x  - 1 / \(\ge\)/ 2001 - x + x - 1 /

/ 2001 - x / + / x - 1 / > / 2000 /

/ 2001 - x / + / x - 1 / >  2000 

 Vậy giá trị nhỏ nhất của A là 2000 khi x = 1

Chúc bạn học tốt!!!!!

1 tháng 11 2017

Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(A=\left|x-2001\right|+\left|x+1\right|=\left|2001-x\right|+\left|x+1\right|=\left|2001-x+x+1\right|=2002\)

Dấu " = " khi \(\left\{{}\begin{matrix}2001-x\ge0\\x+1\ge0\end{matrix}\right.\Rightarrow-1\le x\le2001\)

Vậy \(MIN_A=2002\) khi \(-1\le x\le2002\)

1 tháng 11 2017

Ta có: \(\left\{{}\begin{matrix}\left|x-2001\right|=\left|2001-x\right|\ge2001-x\\\left|x+1\right|\ge x+1\end{matrix}\right.\)

\(\Rightarrow\left|x-2001\right|+\left|x+1\right|\ge\left(2001-x\right)+\left(x+1\right)\)

\(\Rightarrow A\ge2001-x+x+1\)

\(\Rightarrow A\ge2002\)

Dấu "=" xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}\left|2001-x\right|=2001-x\\\left|x+1\right|=x+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2001-x\ge0\\x+1\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le2001\\x\ge-1\end{matrix}\right.\)

\(\Leftrightarrow-1\le x\le2001\)

Vậy giá trị nhỏ nhất của A là 2002 \(\Leftrightarrow-1\le x\le2001\)

AH
Akai Haruma
Giáo viên
16 tháng 10 2021

Lời giải:

Áp dụng BĐT $|a|+|b|\geq |a+b|$ ta có:
$A=|x-2001|+|x-1|=|2001-x|+|x-1|\geq |2001-x+x-1|=2000$

Vậy $A_{\min}=2000$. Giá trị này đạt được khi $(2001-x)(x-1)\geq 0$

$\Leftrightarrow 2001\geq x\geq 1$

11 tháng 10 2021

\(A=0,5-\left|x-3,5\right|\le0,5\\ A_{max}=0,5\Leftrightarrow x-3,5=0\Leftrightarrow x=3,5\\ B=-\left|1,4-x\right|2=-2\left|1,4-x\right|\le0\\ B_{min}=0\Leftrightarrow1,4-x=0\Leftrightarrow x=1,4\)

15 tháng 2 2016

|x-2001|+|x-1|=|x-2001|+|1-x|

BĐT gttđ:|a+b| > |a+b|

áp dụng:=>|x-2001|+|1-x| > |(x-2001)+(1-x)|=2000

=>Amin=2000

dấu "=" xảy ra<=>(x-2001)(x-1)>0 tức 1<x<2000

13 tháng 4 2017

Vì |1 - x| = |x - 1| nên A = |x - 2001| + |x - 1|

= |x - 2001| + |1 - x| ≥| x – 2001 + 1 - x| = 2000 (Áp dụng bài 141)

Vậy giá trị nhỏ nhất của biểu thức A = 2000 khi x – 2001 và 1 – x cùng dấu

Vậy 1 ≤ x ≤ 2001

23 tháng 4 2022

\(a.A=\left(x-2\right)^2+\left(y+1\right)^2+1\ge1\forall x;y\) . " = " \(\Leftrightarrow x=2;y=-1\) 

b.\(B=7-\left(x+3\right)^2\le7\forall x\)  " = " \(\Leftrightarrow x=-3\)

c.\(C=\left|2x-3\right|-13\ge-13\forall x\)  " = " \(\Leftrightarrow x=\dfrac{3}{2}\)

d.\(D=11-\left|2x-13\right|\le11\forall x\)  " = " \(\Leftrightarrow x=\dfrac{13}{2}\)

23 tháng 4 2022

:o

A =|3x-4| + |5x-7| -x +2025

- Nếu x < \(\dfrac{4}{3}\):

\(\Rightarrow\) \(\left\{{}\begin{matrix}3x-4< 0\\5x-7< 0\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}\text{|}3x-4\text{|}=-3+4\\\text{|}5x-7\text{|}=-5x+7\end{matrix}\right.\) 

\(\Rightarrow\) \(A=-3x+4-5x+7-x+2025\) 

Vì x \(< \dfrac{4}{3}\) \(\Rightarrow\) \(9x< 12\) \(\Rightarrow\) \(-9x>-12\) 

\(\Rightarrow\) \(-9x+2036>2024\) 

\(\Rightarrow\) A \(>2024\) ( Loại)

Nếu \(\dfrac{4}{3}\) \(\le\) x \(< \dfrac{7}{5}\) 

\(\Rightarrow\) \(\left\{{}\begin{matrix}3x-4>0\\5x-7< 0\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}\text{|}3x-4\text{|}=3x-4\\\text{|}5x-7\text{|}=-5x+7\end{matrix}\right.\) 

\(\Rightarrow\) A= \(-3x-4-5x+7-x+2025\) 

       =   \(-3x+2028\) 

Ta có: \(\dfrac{4}{3}\) \(\le x\) \(\Rightarrow\) \(-3x\) \(>\dfrac{-21}{5}\) 

\(\Rightarrow\) 2024 \(\ge\) \(-3x+2028>\dfrac{10119}{5}\) ( loại)

Nếu x :

\(\ge\dfrac{7}{5}\\ \Rightarrow\left\{{}\begin{matrix}3x-4>0\\5x-7>0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}\text{|}3x-4\text{|}=3x-4\\\text{|}5x-7\text{|}=5x-7\end{matrix}\right.\\ \Rightarrow A=3x-4+5x-7-x+2025\) 

  \(=7x+2014\) 

Vì \(x\ge\dfrac{7}{5}\) \(\Rightarrow\) \(7x\ge\dfrac{49}{5}\) 

\(\Rightarrow\) \(7x+2014\) \(\ge\dfrac{19}{5}+2014=\dfrac{10119}{5}\) 

\(\Rightarrow\) A \(\ge\) \(\dfrac{10119}{5}\) (  t/m)

Vậy A đạt GTNN khi A bằng \(\dfrac{10119}{5}\)

Dấu "=" xảy ra khi  \(x=\dfrac{7}{5}\)