K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2021

\(A=\dfrac{2x+1}{4\sqrt{x}}\)

\(A=\dfrac{\sqrt{x}}{2}-\dfrac{1}{4\sqrt{x}}\)

Để A nguyên thì \(\dfrac{1}{4\sqrt{x}}\) nguyên

\(4\sqrt{x}\) là ước của 1 {\(\mp\)1}

*\(4\sqrt{x}=1\)

\(\sqrt{x}=\dfrac{1}{4}\)

\(x=\dfrac{1}{16}\)(TM)

*\(4\sqrt{x}=-1\)

\(\sqrt{x}=-\dfrac{1}{4}\)(Loại)

Vậy x ϵ {\(\dfrac{1}{16}\)} thì A nguyên

29 tháng 11 2021

undefinedundefinedundefined

AH
Akai Haruma
Giáo viên
9 tháng 9 2021

Lời giải:

a.

\(A=\frac{(x\sqrt{x}-4x)-(\sqrt{x}-4)}{2(\sqrt{x}-4)(\sqrt{x}-2)(\sqrt{x}-1)}\)

ĐKXĐ: \(\left\{\begin{matrix} x\geq 0\\ \sqrt{x}-4\neq 0\\ \sqrt{x}-2\neq 0\\ \sqrt{x}-1\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ x\neq 16\\ x\neq 4\\ x\neq 1\end{matrix}\right.\)

\(A=\frac{x(\sqrt{x}-4)-(\sqrt{x}-4)}{2(\sqrt{x}-4)(\sqrt{2}-2)(\sqrt{x}-1)}=\frac{(x-1)(\sqrt{x}-4)}{2(\sqrt{x}-4)(\sqrt{x}-2)(\sqrt{x}-1)}\)

\(=\frac{(\sqrt{x}-1)(\sqrt{x}+1)(\sqrt{x}-4)}{2(\sqrt{x}-4)(\sqrt{x}-2)(\sqrt{x}-1)}=\frac{\sqrt{x}+1}{2(\sqrt{x}-2)}\)

b.

Với $x$ nguyên, để $A\in\mathbb{Z}$ thì $\sqrt{x}+1\vdots 2(\sqrt{x}-2)}$

$\Rightarrow \sqrt{x}+1\vdots \sqrt{x}-2$
$\Leftrightarrow \sqrt{x}-2+3\vdots \sqrt{x}-2$

$\Leftrightarrow 3\vdots \sqrt{x}-2$

$\Rightarrow \sqrt{x}-2\in\left\{\pm 1;\pm 3\right\}$

$\Rightarrow x\in\left\{1;9;25\right\}$

Thử lại thấy đều thỏa mãn.

 

a: \(A=\dfrac{x\left(\sqrt{x}-4\right)-\left(\sqrt{x}-4\right)}{2x\sqrt{x}-8x-6x+24\sqrt{x}+4\sqrt{x}-16}\)

\(=\dfrac{\left(\sqrt{x}-4\right)\left(x-1\right)}{\left(\sqrt{x}-4\right)\left(2x-6\sqrt{x}+4\right)}=\dfrac{x-1}{2x-6\sqrt{x}+4}\)

\(=\dfrac{x-1}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}+1}{2\sqrt{x}-4}\)

b: Để A nguyên thì \(2\sqrt{x}+2⋮2\sqrt{x}-4\)

\(\Leftrightarrow2\sqrt{x}-4\in\left\{2;-2;6\right\}\)

hay \(x\in\left\{9;1;25\right\}\)

loading...  loading...  

8 tháng 11 2023

a) \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{\sqrt{x}-4}{x-1}\right)\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\left(dkxd:x\ge0;x\ne1;x\ne4\right)\)

\(=\left[\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right]\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\)

\(=\dfrac{x-\sqrt{x}+\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\)

\(=\dfrac{x-4}{\sqrt{x}-1}\cdot\dfrac{1}{\sqrt{x}-2}\)

\(=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\)

b) Với \(x\ge0;x\ne1;x\ne4\):

Thay \(x=3+2\sqrt{2}\) vào \(P\), ta được:

\(P=\dfrac{\sqrt{3+2\sqrt{2}}+2}{\sqrt{3+2\sqrt{2}}-1}\)

\(=\dfrac{\sqrt{\left(\sqrt{2}\right)^2+2\cdot\sqrt{2}\cdot1+1^2}+2}{\sqrt{\left(\sqrt{2}\right)^2+2\cdot\sqrt{2}\cdot1+1^2}-1}\)

\(=\dfrac{\sqrt{\left(\sqrt{2}+1\right)^2}+2}{\sqrt{\left(\sqrt{2}+1\right)^2}-1}\)

\(=\dfrac{\sqrt{2}+1+2}{\sqrt{2}+1-1}\)

\(=\dfrac{\sqrt{2}+3}{\sqrt{2}}\)

\(=\dfrac{2+3\sqrt{2}}{2}\)

c) Với \(x\ge0;x\ne1;x\ne4\),

\(P=\dfrac{\sqrt{x}+2}{\sqrt{x}-1}=\dfrac{\sqrt{x}-1+3}{\sqrt{x}-1}=1+\dfrac{3}{\sqrt{x}-1}\)

Để \(P\) có giá trị nguyên thì \(\dfrac{3}{\sqrt{x}-1}\) có giá trị nguyên

\(\Rightarrow 3\vdots\sqrt x-1\\\Rightarrow \sqrt x-1\in Ư(3)\)

\(\Rightarrow\sqrt{x}-1\in\left\{1;3;-1;-3\right\}\)

\(\Rightarrow\sqrt{x}\in\left\{2;4;0;-2\right\}\) mà \(\sqrt{x}\ge0\)

\(\Rightarrow\sqrt{x}\in\left\{2;4;0\right\}\)

\(\Rightarrow x\in\left\{4;16;0\right\}\)

Kết hợp với ĐKXĐ của \(x\), ta được:

\(x\in\left\{0;16\right\}\)

Vậy: ...

\(\text{#}Toru\)

27 tháng 11 2018

\(Q=\frac{\sqrt{x}\cdot\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\cdot\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

\(Q=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)

\(Q=x+1\)

Không thể tìm được GTLN hay GTNN của Q.

b)

   \(\frac{3x+3}{\sqrt{x}}=3\sqrt{x}+\frac{3}{\sqrt{x}}\)

Để \(\frac{3Q}{\sqrt{x}}\) nguyên thì \(\frac{3}{\sqrt{x}}\)nguyên hay \(\sqrt{x}\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Vì \(\sqrt{x}\)dương nên \(\sqrt{x}\in\left\{1;3\right\}\)

Vậy x=1, x=9 là các giá trị cần tìm

19 tháng 11 2023

\(P=\dfrac{B}{A}\\ =\dfrac{\sqrt{x}+2}{\sqrt{x}-1}:\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\\ =\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+2}\\ =\dfrac{\sqrt{x}-3}{\sqrt{x}-1}\\ =\dfrac{\sqrt{x}-1-2}{\sqrt{x}-1}\\ =1-\dfrac{2}{\sqrt{x}-1}\)

Để \(P=\dfrac{B}{A}\)  có giá trị nguyên

Thì \(2⋮\left(\sqrt{x}-1\right)\Rightarrow\left(\sqrt{x}-1\right)\inƯ\left(2\right)=\left\{2;-2;1;-1\right\}\)

\(\sqrt{x}-1\) 2  -2  1  -1 
 \(x\) 9 ∅ 4 0
Nhận - Loạinhận loại nhận nhận

Vậy \(x\in\left\{9;4;0\right\}\) thì \(x\) nguyên và \(P\) có giá trị nguyên

a: ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\notin\left\{1;4\right\}\end{matrix}\right.\)

\(A=\left(\dfrac{1}{x-4}+\dfrac{1}{\sqrt{x}+2}\right):\dfrac{\sqrt{x}-1}{x+2\sqrt{x}}\)

\(=\left(\dfrac{1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{1}{\sqrt{x}+2}\right)\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}-1}\)

\(=\dfrac{1+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}}{\sqrt{x}-1}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

b: Để A là số nguyên thì \(\sqrt{x}⋮\sqrt{x}-2\)

=>\(\sqrt{x}-2+2⋮\sqrt{x}-2\)

=>\(\sqrt{x}-2\inƯ\left(2\right)\)

=>\(\sqrt{x}-2\in\left\{1;-1;2;-2\right\}\)

=>\(\sqrt{x}\in\left\{3;1;4;0\right\}\)

=>\(x\in\left\{9;1;16;0\right\}\)

Kết hợp ĐKXĐ, ta được: \(x\in\left\{9;16\right\}\)

c: A<0

=>\(\dfrac{\sqrt{x}}{\sqrt{x}-2}< 0\)

=>\(\sqrt{x}-2< 0\)

=>\(\sqrt{x}< 2\)

=>0<=x<4

Kết hợp ĐKXĐ, ta được: 0<x<4 và x<>1

28 tháng 10 2023

a: \(B=\dfrac{1}{\sqrt{x}-2}-\dfrac{\sqrt{x}}{4-x}\)

\(=\dfrac{1}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{\sqrt{x}+2+\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{2\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

Khi x=16 thì \(B=\dfrac{2\cdot4+2}{\left(4-2\right)\left(4+2\right)}=\dfrac{10}{2\cdot6}=\dfrac{10}{12}=\dfrac{5}{6}\)

b: P=B/A

\(=\dfrac{2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}:\dfrac{2}{\sqrt{x}+2}\)

\(=\dfrac{2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}+2}{2}=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\)

c: P<1

=>P-1<0

=>\(\dfrac{\sqrt{x}+1-\sqrt{x}+2}{\sqrt{x}-2}< 0\)

=>\(\dfrac{3}{\sqrt{x}-2}< 0\)

=>\(\sqrt{x}-2< 0\)

=>\(\sqrt{x}< 2\)

=>0<=x<4

mà x nguyên

nên \(x\in\left\{0;1;2;3\right\}\)

Kết hợp ĐKXĐ, ta được: \(x\in\left\{0;1;2;3\right\}\)