\(\frac{n^2+3n-2}{n^2-3}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2018

Để \(N\) nguyên thì \(n^2+3n-2⋮n^2-3\)

\(\Rightarrow n^2-3+3n+1⋮n^2-3\)

\(\Rightarrow3n+1⋮n^2-3\)

\(\Rightarrow\left(3n+1\right)\left(3n-1\right)⋮n^2-3\)

\(\Rightarrow9n^2-1⋮n^2-3\)

\(\Rightarrow9n^2-27+26⋮n^2-3\)

\(\Rightarrow9\left(n^2-3\right)+26⋮n^2-3\)

\(\Rightarrow26⋮n^2-3\)

\(\Rightarrow n^2-3\inƯ\left(26\right)=\left\{-26,-13,-2,-1,1,2,13,26\right\}\)

Vì \(n^2\ge0\Rightarrow n^2-3\ge-3\) nên \(n^2-3\in\left\{-2,-1,1,2,13,26\right\}\)

\(\Rightarrow n^2\in\left\{1,2,4,5,16,29\right\}\)

Vì \(n^2\) là số chính phương nên \(n^2\in\left\{1,4,16\right\}\)

\(\Rightarrow n\in\left\{-1,1,-2,2,-4,4\right\}\)

Thử lại thấy \(n\in\left\{-1,1,-2,2,4\right\}\) thỏa mãn

28 tháng 7 2018

AI K MK MK SẼ K LẠI 

6 tháng 6 2020

a) *) \(\frac{n-1}{3-2n}\)

Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))

\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)

=> ƯCLN (n-1;3-2n)=1

=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên

*) \(\frac{3n+7}{5n+12}\)

Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)

\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)

\(\Rightarrow d=1\)

=> ƯCLN (3n+7;5n+12)=1

=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên

6 tháng 6 2020

b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)

\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)

Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên

2 nguyên => \(\frac{7}{n-1}\)nguyên

=> 7 chia hết cho n-1

n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Ta có bảng

n-1-7-117
n-6028

vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên

Để (3n+2)/(n-1) là số nguyên
=> 3n+2 chia hết cho n-1
=> (3n-3)+3+2 chia hết cho n-1
=>3(n-1)+5 chia hết cho n-1
Vì 3(n-1) chia hết cho n-1 nên 5 chia hết cho n-1
=> n-1 thuộc Ư(5)={-5;-1;1;5}
Nếu n-1=-5 => n=-4
Nếu n-1=-1 => n=0
Nếu n-1=1 => n=2
Nếu n-1=5 => n=6
Vậy n thuộc {-4;0;2;6}

:D

26 tháng 2 2017

Do A có giá trị nguyên

\(\Rightarrow3n+2⋮n-1^{\left(1\right)}\)

Mà  \(n-1⋮n-1\)

\(\Rightarrow3\left(n-1\right)⋮n-1^{\left(2\right)}\)

Từ (1) và (2)

\(\Rightarrow3n+2-3\left(n-1\right)⋮n-1\)

\(\Rightarrow3n+2-3n+3⋮n-1\)

\(\Rightarrow5⋮n-1\)

\(\Rightarrow n-1\inƯ\left(5\right)=\left\{-1;-5;5;1\right\}\)

Xét \(n-1=-1\Rightarrow n=-4\)

\(n-1=-5\Rightarrow n=0\)

\(n-1=5\Rightarrow n=6\)

\(n-1=1\Rightarrow n=2\)

Vậy ...

26 tháng 2 2017

A = \(\frac{3n+2}{n-1}=\frac{3n-3+5}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=\frac{3\left(n-1\right)}{n-1}+\frac{5}{n-1}=3+\frac{5}{n-1}\)

Để A có giá trị nguyên <=> n - 1 \(\in\)Ư(5) = {1;-1;5;-5}

Ta có: n - 1 = 1 => n = 2

          n - 1 = -1 => n = 0

          n - 1 = 5 => n = 6

          n - 1 = -5 => n = -4

Vậy n = {2;0;6;-4}

2 tháng 8 2015

=> 3n + 2 là bội của n - 1 hay 3n + 2 phải chia hết cho n - 1

=> 3 là bội của n - 1 hay 3 phải chia hết cho n - 1

\(\RightarrowƯ_3=\left\{+-1;+-3\right\}\)

=>     n - 1 = 1                   =>     n = 1 + 1 = 2

         n - 1 = -1                  =>     n = -1 + 1 = 0

         n - 1 = 3                   =>     n = 3 + 1 = 4

         n - 1 = -3                  =>     n = -3 + 1 = -2

 

=>               \(n\in\left\{-2;0;2;4\right\}\)

3 tháng 5 2016

A = (3n-3+4)/n-1

= [3(n-1)+4]/n-1

=3(n-1)/n-1 + 4/n-1

= 3 + 4/n-1

để A nguyên thì n-1 thược ước của 4

TỰ TÍNH TIẾP

26 tháng 12 2014

Để (3n+2)/(n-1) là số nguyên

=> 3n+2 chia hết cho n-1

=> (3n-3)+3+2 chia hết cho n-1

=>3(n-1)+5 chia hết cho n-1

Vì 3(n-1) chia hết cho n-1 nên 5 chia hết cho n-1

=> n-1 thuộc Ư(5)={-5;-1;1;5}

  • Nếu n-1=-5 => n=-4
  • Nếu n-1=-1 => n=0
  • Nếu n-1=1 => n=2
  • Nếu n-1=5 => n=6

Vậy n thuộc {-4;0;2;6}

25 tháng 7 2016

Để (3n+2)/(n-1) là số nguyên

=> 3n+2 chia hết cho n-1

=> (3n-3)+3+2 chia hết cho n-1

=>3(n-1)+5 chia hết cho n-1

Vì 3(n-1) chia hết cho n-1 nên 5 chia hết cho n-1

=> n-1 thuộc Ư(5)={-5;-1;1;5}

  • Nếu n-1=-5 => n=-4
  • Nếu n-1=-1 => n=0
  • Nếu n-1=1 => n=2
  • Nếu n-1=5 => n=6

Vậy n thuộc {-4;0;2;6}

17 tháng 2 2016

Để \(\frac{3n+2}{n-1}\)là số nguyên thì 3n + 2 phải chia hết cho n - 1

=> 3n - 3 + 5 chia hết cho n - 1

=> 3(n - 1) + 5 chia hết cho n - 1

=> 5 chia hết cho n - 1 (Vì 3(n - 1) chia hết cho n - 1)

=> n - 1 thuộc {-1; 1; -5; 5}

=> n thuộc {0; 2; -4; 6}

Vậy...

17 tháng 2 2016

\(A=\frac{3n+2}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=3+\frac{5}{n-1}\)

A E Z<=>5/n-1 E Z<=>5 chia hết chia hết cho n-1

=>n-1 E Ư(5)={-5;-1;1;5]

=>n E {-4;0;2;6}

vậy....