\(\frac{3x^2-x+1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2015

\(A=\frac{3x^2-x+1}{3x+2}=\frac{3x^2-x-2}{3x+2}+\frac{3}{3x+2}=x-1+\frac{3}{3x+2}\)

A nguyên <=> 3 chia hết cho 3x+2<=>3x+2 là Ư(3)

Mà Ư(3)={+-1;+-3}

Ta có bảng sau:

3x+2-11-33
x-1-1/3(L)-5/3(L)1/3(L)

Vậy x=-1 thì A nguyên

 

15 tháng 8 2020

c) ĐKXĐ : \(x\ne4\)

Để biểu thức \(\frac{3x^3-4x^2+x-1}{x-4}\) nguyên với \(x\) nguyên thì :

\(3x^3-4x^2+x-1⋮x-4\)

\(\Leftrightarrow3x^3-12x^2+8x^2-32x+33x-132+131⋮x-4\)

\(\Leftrightarrow3x^2.\left(x-4\right)+8x.\left(x-4\right)+31.\left(x-4\right)+131⋮x-4\)

\(\Leftrightarrow131⋮x-4\)

\(\Leftrightarrow x-4\inƯ\left(131\right)\)

\(\Leftrightarrow x-4\in\left\{-1,1,131,-131\right\}\)

\(\Leftrightarrow x\in\left\{3,5,135,-127\right\}\)

d) ĐKXĐ : \(x\ne-\frac{3}{2}\)

Để biểu thức \(\frac{3x^2-x+1}{3x+2}\) nhận giá trị nguyên với \(x\) nguyên thì :

\(3x^2-x+1⋮3x+2\)

\(\Leftrightarrow3x^2+2x-3x-2+3⋮3x+2\)

\(\Leftrightarrow x.\left(3x+2\right)-\left(3x+2\right)+3⋮3x+2\)

\(\Leftrightarrow3⋮3x+2\)

\(\Leftrightarrow3x+2\inƯ\left(3\right)\)

\(\Leftrightarrow3x+2\in\left\{-1,1,-3,3\right\}\)

\(\Leftrightarrow x\in\left\{-1,-\frac{1}{3},-\frac{5}{3},\frac{1}{3}\right\}\) mà \(x\) nguyên 

\(\Rightarrow x=-1\)

29 tháng 5 2016

Ta có:\(3x^3-4x^2+x-1=\left(x-4\right)\left(3x^2+8x+33\right)+131\)

Để A nguyên => x-4 phải là ước của 131.Mà ước của 131=-1;1;-131;131

\(x-4=1\Rightarrow x=1+4=5\)

\(x-4=-1\Rightarrow x=-1+4=3\)

\(x-4=131\Rightarrow x=131+4=135\)

\(x-4=-131\Rightarrow x=-131+4=-127\)

Thử lại,ta có các giá trị x thỏa mãn.

Vậy các giá trị x cần tìm là:3;5;135;-127

17 tháng 3 2020

a) \(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-5x}{x^2-1}\right)\cdot\frac{x-3}{x}\left(x\ne\pm1;x\ne0\right)\)

\(\Leftrightarrow A=\left[\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}+\frac{x^2-5x}{\left(x-1\right)\left(x+1\right)}\right]\cdot\frac{x-3}{x}\)

\(\Leftrightarrow A=\left(\frac{x^2+2x+1-x^2+2x-1+x^2-5x}{\left(x-1\right)\left(x+1\right)}\right)\cdot\frac{x-3}{x}\)

\(\Leftrightarrow A=\frac{x^2-x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{x-3}{x}\)

\(\Leftrightarrow A=\frac{x\left(x-1\right)\left(x-3\right)}{\left(x-1\right)\left(x+1\right)x}=\frac{x-3}{x+1}\)

Vậy \(A=\frac{x-3}{x+1}\left(x\ne\pm1;x\ne0\right)\)

b) \(A=\frac{x-3}{x+1}\left(x\ne\pm1;x\ne0\right)\)

Để A nhận giá trị nguyên thì x-3 chia hết chi x+1

=> (x+1)-4 chia hết chi x+1

=> 4 chia hết cho x+1

x nguyên => x+1 nguyên => x+1 thuộc Ư (4)={-4;-2;-1;1;2;4}
Ta có bảng

x+1-4-2-1124
x-5-3-2013
ĐCĐKtmtmtmktmktmtm

Vậy x={-5;-3;-2;3} thì A đạt giá trị nguyên

c) I3x-1I=5

\(\Rightarrow\orbr{\begin{cases}3x-1=5\\3x-1=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=6\\3x=-4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=\frac{-4}{3}\end{cases}}}\)

Đên đây thay vào rồi tính nhé

16 tháng 3 2020

a) \(ĐKXĐ:\hept{\begin{cases}x\ne\pm1\\x\ne0\end{cases}}\)

\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-5x}{x^2-1}\right)\cdot\frac{x-3}{x}\)

\(\Leftrightarrow A=\frac{\left(x+1\right)^2-\left(x-1\right)^2+x^2-5x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{x-3}{x}\)

\(\Leftrightarrow A=\frac{x^2+2x+1-x^2+2x-1+x^2-5x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{x-3}{x}\)

\(\Leftrightarrow A=\frac{\left(x^2-x\right)\left(x-3\right)}{x\left(x-1\right)\left(x+1\right)}\)

\(\Leftrightarrow A=\frac{x-3}{x+1}\)

b) Để \(A\inℤ\)

\(\Leftrightarrow x-3⋮x+1\)

\(\Leftrightarrow x+1-4⋮x+1\)

\(\Leftrightarrow4⋮x+1\)

\(\Leftrightarrow x+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

\(\Leftrightarrow x\in\left\{0;-2;-3;1;3;-5\right\}\)

Mà \(x\ne0;x\ne1\)

\(\Leftrightarrow x\in\left\{-2;-3;3;-5\right\}\)

Vậy để \(A\inℤ\Leftrightarrow x\in\left\{-2;-3;3;-5\right\}\)

c) Khi \(\left|3x-1\right|=5\)

\(\Leftrightarrow\orbr{\begin{cases}3x-1=5\\3x-1=-5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}3x=6\\3x=-4\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-\frac{4}{3}\end{cases}}\)

Vì khi x = 2 hoặc x = -4/3 thì x không thuộc tập hợp các giá trị làm cho A nguyên

Vậy khi |3x - 1| = 5 thì để cho A nguyên \(\Leftrightarrow x\in\varnothing\)

16 tháng 8 2019

TA CÓ: 

\(\frac{x^3-3x^2-3x-1}{x^2+x+1}=x^3-\frac{3\left(x^2+x+1\right)+2}{x^2+x+1}\)

\(=x^3-3+\frac{2}{x^2+x+1}\)

Để thỏa mãn đề bài => \(x^2+x+1\inƯ\left(2\right)\)

\(\Rightarrow x^2+x+1\in\left\{\pm1;\pm2\right\}\)

\(\Rightarrow x^2+x\in\left\{0;-2;1;-3\right\}\)

\(\Rightarrow x\left(x+1\right)\in\left\{0;-2;1;-3\right\}\)

đến đây làm nốt

16 tháng 8 2019

123456789

NM
7 tháng 1 2021

ta có \(\frac{3x^2+6x+5}{x+1}=\frac{3\left(x+1\right)^2+2}{x+1}=3\left(x+1\right)+\frac{2}{x+1}\)

do x nguyên nên 3(x+1) là số nguyên

do đó \(\frac{2}{x+1}\) phải là số nguyên hay x+1 là ước của 2

\(\Rightarrow\orbr{\begin{cases}x+1=\pm1\\x+1=\pm2\end{cases}\Rightarrow x\in\left\{-3,-2,0,1\right\}}\)