Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{a^4-16}{a^4-4a^3+8a^2-16a+16}=\frac{\left(a^2-4\right)\left(a^2+4\right)}{a^4-4a^3+4a^2+4a^2-16a+16}=\frac{\left(a-2\right)\left(a+2\right)\left(a^2+4\right)}{a^2\left(a^2-4a+4\right)+4\left(a^2-4a+4\right)}\)
\(=\frac{\left(a-2\right)\left(a+2\right)\left(a^2+4\right)}{\left(a^2+4\right)\left(a-2\right)^2}=\frac{a+2}{a-2}=\frac{a-2+4}{a-2}=1+\frac{4}{a-2}\)
Để \(M\in Z\Leftrightarrow a-2\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Ta có bảng:
a - 2 | 1 | -1 | 2 | -2 | 4 | -4 |
a | 3 | 1 | 4 | 0 | 6 | -2 |
Vậy...
a) \(ĐKXĐ:\hept{\begin{cases}a\ne\pm2\\a\ne1\\a\ne0\end{cases}}\)
\(A=\left(\frac{4a}{2+a}+\frac{8a^2}{4-a^2}\right):\left(\frac{a-3}{a^2-2a}-\frac{2}{a}\right)\)
\(\Leftrightarrow A=\frac{8a-4a^2+8a^2}{\left(2-a\right)\left(2+a\right)}:\frac{a-3-2a+4}{a\left(a-2\right)}\)
\(\Leftrightarrow A=\frac{4a^2+8a}{\left(2-a\right)\left(2+a\right)}:\frac{-a+1}{a\left(a-2\right)}\)
\(\Leftrightarrow A=\frac{4a}{2-a}:\frac{-a+1}{a\left(a-2\right)}\)
\(\Leftrightarrow A=\frac{4a^2\left(a-2\right)}{\left(a-2\right)\left(a-1\right)}\)
\(\Leftrightarrow A=\frac{4a^2}{a-1}\)
b) Để A nhận giá trị nguyên
\(\Leftrightarrow\frac{4a^2}{a-1}\inℤ\)
\(\Leftrightarrow4a^2⋮a-1\)
\(\Leftrightarrow4\left(a^2-1\right)+4⋮a-1\)
\(\Leftrightarrow4\left(a-1\right)\left(a+1\right)+4⋮a-1\)
\(\Leftrightarrow4⋮a-1\)
\(\Leftrightarrow a-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
\(\Leftrightarrow a\in\left\{0;2;-1;3;-3;5\right\}\)
Ta sẽ loại các giá trị ở đkxđ
Vậy để \(A\inℤ\Leftrightarrow a\in\left\{2;-1;3;-3;5\right\}\)
\(a,\)\(A=\frac{a^2+4a+4}{a^3+2a^2-4a-8}\)
\(=\frac{\left(a+2\right)^2}{a^2\left(a+2\right)-4\left(a+2\right)}\)
\(=\frac{\left(a+2\right)^2}{\left(a+2\right)\left(a^2-4\right)}\)
\(=\frac{\left(a+2\right)^2}{\left(a+2\right)\left(a+2\right)\left(a-2\right)}\)
\(=\frac{1}{a-2}\)
\(a,A=\frac{\left(a+2\right)^2}{\left(a+2\right)\left(a^2-4\right)}=\frac{a+2}{\left(a-2\right)\left(a+2\right)}=\frac{1}{a-2}\)
b, Để A có giá trị là một số nguyên thì \(1⋮a-2\)
=> \(\orbr{\begin{cases}a-2=1\\a-2=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}a=3\\a=1\end{cases}}}\)