Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có: \(3\left[\left(x-2\right)^{10}+2\right]=3\left(x-2\right)^{10}+6\ge6\) với mọi x
\(=>A\le\frac{5}{6}\) với mọi x
Dấu "=" xảy ra <=> x-2=0<=>x=2
Vậy maxA=5/6 khi x=2
Có : \(\left(4-x\right)^2\ge0\)
\(\Rightarrow\left(4-x\right)^2-2\ge-2\)
\(\Rightarrow\frac{10}{\left(4-x\right)^2-2}\ge\frac{10}{-2}\)
\(\Rightarrow\frac{-10}{\left(4-x\right)^2-2}\le\frac{-10}{-2}\)
\(\Rightarrow\frac{-10}{\left(4-x\right)^2-2}=5\)
\(\Leftrightarrow C\le5\)
Dấu " = " xảy ra khi và chỉ khi \(\left(4-x\right)^2=0\)
\(\Leftrightarrow x=4\)
Vậy \(Max_C=5\Leftrightarrow x=4\).
tớ cũng đang học cái đấy nè
225^10
a = _________ = 3^10
75^10
2^15 * 3^8 2^15 * 3^8
c= _____________= -------------------- =2^3 * 3^5
2^3 * 3^3 * 2^9 2^12 * 3^3
Ta có: \(\left(x+2\right)^2=0\) khi \(x=-2\)
\(\Rightarrow GTLN\)của \(A=\frac{3}{4}\)khi \(x=-2\)
Vậy GTLN của \(A=\frac{3}{4}\)
\(a)\) Ta có :
\(A=\frac{1}{x^2-4x+7}\)
\(A=\frac{1}{\left(x^2-4x+4\right)+3}\)
\(A=\frac{1}{\left(x-2\right)^2+3}\)
Lại có :
\(\left(x-2\right)^2\ge0\)
\(\Rightarrow\)\(\left(x-2\right)^2+3\ge3\)
\(\Rightarrow\)\(A=\frac{1}{\left(x-2\right)^2+3}\le\frac{1}{3}\)
Dấu "=" xảy ra khi và chỉ khi \(\left(x-2\right)^2+3=3\)
\(\Leftrightarrow\)\(\left(x-2\right)^2=3-3\)
\(\Leftrightarrow\)\(\left(x-2\right)^2=0\)
\(\Leftrightarrow\)\(x-2=0\)
\(\Leftrightarrow\)\(x=2\)
Vậy GTLN của \(A\) là \(\frac{1}{3}\) khi 2\(x=2\)
Chúc bạn học tốt ~
\(b)\) Ta có :
\(f\left(x\right)=x^2-4x+7\)
\(f\left(x\right)=\left(x^2-4x+4\right)+3\)
\(f\left(x\right)=\left(x-2\right)^2+3\ge3>0\)
Vậy đa thức \(f\left(x\right)\) vô nghiệm
Chúc bạn học tốt ~
Có (4 - x)2 \(\ge\)0 với mọi x
=> (4 - x)2 - 2 \(\ge\)-2 với mọi x
=> \(\frac{10}{\left(4-x\right)^2-2}\ge\frac{10}{-2}\)
=> \(\frac{-10}{\left(4-x\right)^2-2}\le\frac{-10}{-2}\)
=> \(\frac{-10}{\left(4-x\right)^2-2}\le5\)
=> \(C\le5\)
Dấu "=" xảy ra <=> (4 - x)2 = 0
<=> 4 - x = 0
<=> x = 4
KL: \(C_{max}=5\)<=> x = 4
=>