\(\sqrt{x}-2x+2\)

b)\(x+\sqrt{2-x...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2016

a) Ta có : \(A=\sqrt{x}-2x+2=-2\left(x-2\sqrt{x}.\frac{1}{4}+\frac{1}{16}\right)+\frac{1}{8}+2=-2\left(\sqrt{x}-\frac{1}{4}\right)^2+\frac{17}{8}\le\frac{17}{8}\)

Vậy Max A = \(\frac{17}{8}\Leftrightarrow\sqrt{x}=\frac{1}{4}\Leftrightarrow x=\frac{1}{16}\)

b) Ta phải có \(x\le2\)

Đặt \(y=\sqrt{2-x},y\ge0\Rightarrow x=2-y^2\)

\(\Rightarrow B=x+\sqrt{2-x}=2-y^2+y=-\left(y^2-2.y.\frac{1}{2}+\frac{1}{4}\right)+2+\frac{1}{4}=-\left(y-\frac{1}{2}\right)^2+\frac{9}{4}\le\frac{9}{4}\)

Do đó Max B = \(\frac{9}{4}\Leftrightarrow y=\frac{1}{2}\Leftrightarrow x=\frac{7}{4}\)

22 tháng 7 2018

\(A=\sqrt{\left(x-3\right)-2\sqrt{x-3}+1+2}=\sqrt{\left[\left(x-3\right)-1\right]^2+2}\)

                                                                                    \(=\sqrt{\left(x-4\right)^2+2}\ge\sqrt{2}\)

             GTNN CỦA A=CĂN 2      TẠI X=4

\(B=2.\sqrt{x^2+3x+\frac{9}{4}+\frac{11}{4}}=2.\sqrt{\left(x+\frac{3}{2}\right)^2+\frac{11}{4}}=\sqrt{4.\left(x+\frac{3}{2}\right)^2+11}\ge\sqrt{11}\)

GTNN CỦA B=CĂN 11 TẠI X=-3/2

bài 2

\(A=\sqrt{-2x^2+7}\le\sqrt{7}\)

GTLN CỦA A=CĂN 7 TẠI X=0

\(B=1+\sqrt{-\left(x^2-6x+7\right)}=1+\sqrt{-\left(x-3\right)^2+2}\)

để B lớn nhất thì \(\sqrt{-\left(x-3\right)^2+2}\) lớn nhất 

\(\sqrt{-\left(x-3\right)^2+2}\le2\)

=> GTLN CỦA B=1+2 =3 TẠI X=3

\(C=7+\sqrt{-4\left(x^2-x\right)}=7+\sqrt{-4\left(x-\frac{1}{2}\right)^2+1}\le7+1=8\)

GTLN là 8 tại x=1/2

13 tháng 7 2017

a,= \(\sqrt{x-4}-2=\sqrt{x}-4\)

=>\(x=2\)

vậy min b=0 <=> x=2

b =\(x-2\cdot2\sqrt{x}+4+6=\left(\sqrt{x}-2\right)^2+6\)

=>\(\left(\sqrt{x}-2\right)^2+6\ge6\)

vậy min b=6 <=> x=\(\sqrt{2}\)

\(x-2\cdot\frac{1}{2}\sqrt{x}+\frac{1}{4}-\frac{5}{4}=\left(\sqrt{x}-\frac{1}{2}\right)^2-\frac{5}{4}\)

\(\left(\sqrt{x}-\frac{1}{2}\right)^2-\frac{5}{4}\ge\frac{5}{4}\)

vậy min =  \(\frac{5}{4}\Leftrightarrow x=\sqrt{\frac{1}{2}}\)

13 tháng 7 2017

các câu khác làm tương tự nhé

5 tháng 6 2017

Bạn bình phương lên là tính đc GTLN đó

5 tháng 6 2017

cảm ơn bạn

18 tháng 8 2016

a)Đặt \(A=\sqrt{x-2}+\sqrt{4-x}\)

Đk:\(2\le x\le4\)

\(A^2=x-2+4-x+2\sqrt{\left(x-2\right)\left(4-x\right)}\)

\(=2+2\sqrt{\left(x-2\right)\left(4-x\right)}\) (dùng BĐT Cauchy)

\(\le2+\left(x-2\right)+\left(4-x\right)\)

\(=2+2=4\)

\(\Rightarrow A^2\le4\Leftrightarrow A\le2\)

Dấu = khi \(\sqrt{x-2}=\sqrt{4-x}\Leftrightarrow x=3\)

Vậy MaxA=2 khi x=3

b)Đặt \(B=\sqrt{6-x}+\sqrt{x+2}\)

Đk:\(-2\le x\le6\)

\(B^2=6-x+x+2+2\sqrt{\left(6-x\right)\left(x+2\right)}\)

\(=8+2\sqrt{\left(6-x\right)\left(x+2\right)}\) (Bđt Cauchy)

\(\le8+\left(6-x\right)+\left(x+2\right)\)

\(=8+8=16\)

\(\Rightarrow B^2\le16\Leftrightarrow B\le4\)

Dấu = khi \(\sqrt{6-x}=\sqrt{x+2}\Leftrightarrow x=2\)

Vậy MaxB=4 khi x=2

c)Đặt \(C=\sqrt{x}+\sqrt{2-x}\)

Đk:\(0\le x\le2\)

\(C^2=x+2-x+2\sqrt{x\left(2-x\right)}\)

\(=2+2\sqrt{x\left(2-x\right)}\) (bđt Cauchy)

\(\le2+x+\left(2-x\right)\)

\(=2+2=4\)

\(\Rightarrow C^2\le4\Leftrightarrow C\le2\)

Dấu = khi \(\sqrt{x}=\sqrt{2-x}\Leftrightarrow x=1\)

Vậy MaxC=2 khi x=1

 

 

 

 

 

28 tháng 7 2016

c)đặt C= \(x+4\sqrt{x}-4=\left(x+4\sqrt{x}+4\right)-8\)

=\(\left(\sqrt{x}+2\right)^2-8\)

ta thấy : \(\left(\sqrt{x}+2\right)^2\ge4\) với mọi x>=0

=> \(\left(\sqrt{x}+2\right)^2-8\ge-4\)

=> GTNN của C=-4 khi x=0