K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2016

1/ B = (x+y)((x+y)- 3xy)+(x+y)- 2xy = 2 - 5xy = 2 - 5x(1-x)=5x- 5x + 2 = (x√5 - √5 /2)+3/4 >= 3/4 

Đạt GTNN là 3/4 khi x=y=1/2

2/ P = xy = x(6-x)=-x+6x = 9 - (x-3)2 <=9 

GTLN là 9 khi x=y=3

15 tháng 6 2015

1) tìm giá trị nhỏ nhất của M = x(x-4) + 13

M=x(x-4)+13=x2-4x+13

=x2-4x+4+9

=(x-2)2+9\(\ge\)9(vì (x-2)2\(\ge\)0)

Dấu "=" xảy ra khi x-2 =0

                         <=>x=2

Vậy giá trị nhỏ nhất của M là 9 tại x=2

2) tìm giá trị lớn nhất của P = x(10-x) +6

 P = x(10-x) +6=10x-x2+6=-x2+10x-25+31

                                    =-(x2-10x+25)+31

                                    =-(x-5)2+31\(\le\)31(vì -(x-5)2\(\le\)0)

Dấu = xảy ra khi x-5=0

                      <=>x=5

vậy giá trị lớn nhất của P là 31 tại x=5

3 tháng 5 2019

a) \(6xy+4x-9y-7=0\)

  \(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)

\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)

\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)

Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)

Tự làm típ

4 tháng 5 2019

\(A=x^3+y^3+xy\)

\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))

\(A=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiakovxky ta có :

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)

\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

Hay \(x^3+y^3+xy\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

26 tháng 5 2017

Đặt \(A=x^2+4xy+2y^2-22y+173\)

\(A=\left(x^2+2xy+y^2\right)+\left(y^2-22y+121\right)+52\)

\(A=\left(x+y\right)^2+\left(y-11\right)^2+52\)

\(\left(x+y\right)^2\ge0;\left(y-11\right)^2\ge0\) với mọi x;y => \(A=\left(x+y\right)^2+\left(y-11\right)^2+52\ge52\)

=>minA=52 <=> \(\hept{\begin{cases}\left(x+y\right)^2=0\\\left(y-11\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=0\\y-11=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-11\\y=11\end{cases}}\)

Vậy min=52 khi x=-11 và y=11

26 tháng 5 2017

bài này mình làm tắt

\(B=-x^2-x-y^2-3y+13\)

\(B=\frac{31}{2}-\left(x^2+x+\frac{1}{4}\right)-\left(y^2+3y+\frac{9}{4}\right)\)

\(B=\frac{31}{2}-\left(x+\frac{1}{2}\right)^2-\left(y+\frac{3}{2}\right)^2\le\frac{31}{2}\)

=>maxB=31/2 <=>x=-1/2 và y=-3/2