Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\left|x+1\right|+5\ge5\forall x\)
Dấu '=' xảy ra khi x=-1
b: \(B=\dfrac{x^2+3+12}{x^2+3}=1+\dfrac{12}{x^2+3}\le\dfrac{12}{3}+1=4+1=5\)
Dấu '=' xảy ra khi x=0
a)Ta có: |x+1|>=0(với mọi x)
nên |x+1|+5>=5 hay A>=5
Do đó, GTNN của A là 5 khi:
x+1=0
x=0-1
x=-1
b)tương tự
ta có (x+\(\frac{2}{3}\))\(^2\) ≥ 0 ∀ x
=> MinA= \(\frac{1}{2}\)↔\(\left(x+\frac{2}{3}\right)^2\)=0 ⇒x+\(\frac{2}{3}\)=0⇒ x=\(\frac{-2}{3}\)
ta có a=3-x(1-2x)-(x-1)(x+2)=3-x+2x^2 -x^2-x+2=x^2-2x+5=(x^2 -2x+1)+4=(x-1)2+4< hoặc =4 <=>gtnn của a là 4 khi x-1=0 =>x=1
\(\frac{x^2+15}{x^2+3}=1+\frac{12}{x^2+3}\ge5\)
...............................................
a) ta có |1-2x|>=0
=>3.|1-2x|>=0
=>A>=0-5
A>=-5
dấu "=" xảy ra kh và chỉ khi 1-2x=0
2x=1
x=1/2
Vậy GTNN của A=-5 khi x=1/2
b)ta có -|2-3x|<=0
=>B<=3/4-0
B<=3/4
dấu "=" xảy ra khi và chỉ khi 2-3x=0
3x=2
x=2/3
Vậy GTLN của B=3/4 khi x=2/3
\(A=5-\left|2x-1\right|\le5\)
Dấu "=" xảy ra khi:
\(2x=1\Leftrightarrow x=\dfrac{1}{2}\)
\(B=\dfrac{1}{\left|x-1\right|+3}\le\dfrac{1}{3}\)
Dấu "=" xảy ra khi:
\(x=1\)
\(C=x+\dfrac{1}{2}-\left|x-\dfrac{2}{3}\right|\le\left|x+\dfrac{1}{2}-x-\dfrac{2}{3}\right|=\dfrac{1}{6}\)
Dấu "=" xảy ra khi: \(-\dfrac{1}{2}\le x\le\dfrac{2}{3}\)
Ta có: \(\left|2x-1\right|\le0\) với mọi x
\(\Rightarrow5-\left|2x-1\right|\le5-0\) với mọi x
\(\Leftrightarrow A\le5\)
\(\Rightarrow A_{max}=5\)
Dấu \("="\) xảy ra khi:
\(\left|2x-1\right|=0\\ 2x-1=0\\ 2x=1\\ x=1:2=0,5\)
Vậy A đạt giá trị lớn nhất khi \(x=0,5\)
\(A=\left(2x+\frac{1}{3}\right)^4-1\) . Có: \(\left(2x+\frac{1}{3}\right)\ge0\)
\(\Rightarrow\left(2x+\frac{1}{3}\right)^4-1\ge-1\)
Dấu = xảy ra khi: \(2x+\frac{1}{3}=0\)
\(\Rightarrow2x=-\frac{1}{3}\)
\(\Rightarrow x=-\frac{1}{3}:2=-\frac{1}{6}\)
Vậy: \(Min_A=-1\) tại \(x=-\frac{1}{6}\)