K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 8 2024

\(P=\dfrac{-\left(x^2+1\right)+2x^2-8x+8}{x^2+1}=-1+\dfrac{2\left(x-2\right)^2}{x^2+1}\ge-1\)

\(P_{min}=-1\) khi \(x-2=0\Rightarrow x=2\)

\(P=\dfrac{9\left(x^2+1\right)-8x^2-8x-2}{x^2+1}=9-\dfrac{2\left(2x+1\right)^2}{x^2+1}\le9\)

\(P_{max}=9\) khi \(2x+1=0\Rightarrow x=-\dfrac{1}{2}\)

13 tháng 8 2024

\[
P = \frac{x^2 - 8x + 7}{x^2 + 1}
\]

\[
x^2 - 8x + 7 = (x^2 - 8x + 16) - 9 = (x-4)^2 - 9
\]

\[
P = \frac{(x-4)^2 - 9}{x^2 + 1}
\]

- Tại \( x = 0 \):

\[
P(0) = \frac{0^2 - 8 \times 0 + 7}{0^2 + 1} = \frac{7}{1} = 7
\]

- Tại \( x = 1 \):

\[
P(1) = \frac{1^2 - 8 \times 1 + 7}{1^2 + 1} = \frac{1 - 8 + 7}{2} = \frac{0}{2} = 0
\]

- Tại \( x = 2 \):

\[
P(2) = \frac{2^2 - 8 \times 2 + 7}{2^2 + 1} = \frac{4 - 16 + 7}{4 + 1} = \frac{-5}{5} = -1
\]

- Tại \( x = 4 \)

\[
P(4) = \frac{4^2 - 8 \times 4 + 7}{4^2 + 1} = \frac{16 - 32 + 7}{16 + 1} = \frac{-9}{17}
\]

- Tại \( x = -1 \):

\[
P(-1) = \frac{(-1)^2 - 8 \times (-1) + 7}{(-1)^2 + 1} = \frac{1 + 8 + 7}{1 + 1} = \frac{16}{2} = 8
\]

Dựa trên các giá trị đã tính, ta thấy rằng giá trị lớn nhất của \( P \) là \( 8 \) và giá trị nhỏ nhất là \( -1 \).

=> Max = 8

Min = -1

9 tháng 9 2017

Ta có : \(P=2x^2-8x+1=2\left(x^2-4x\right)+1=2\left(x^2-4x+4-4\right)+1=2\left(x-2\right)^2-7\)

Vì \(2\left(x-2\right)^2\ge0\forall x\) 

Nên : \(P=2\left(x-2\right)^2-7\ge-7\forall x\in R\)

Vậy \(P_{min}=-7\) khi x = 2

31 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

29 tháng 10 2017

B=(x^2-6x+9)-8

B=(x-3)^2-8

Vì (x-3)^2\(\ge0\forall x\)

-> (x-3)-8\(\ge-8\forall x\)

Dấu = xảy ra<=> x-3=0<=>x=3

C=2x^2-10x+1

C=2(x^2-5x+6,25)-11,5

C= 2(x-2,5)^2-11,5

Vì 2(x-2,5)^2\(\ge0\forall x\)

->2(x-2,5)^2-11,5\(\ge-11,5\forall x\)

Dấu = xẩy ra<=> x-2,5=0<=>x=2,5

Vậy Min C là -11,5 <=> x=2,5

D= x^2+10-25

D=(x^2+10+25)-50

D=(x+5)^2-50

Vì (x-5)^2 \(\ge0\forall x\)

-> (x-5)^2-50\(\ge-50\forall x\)

Dấu = xẩy ra <=> x-5=0<=>x=5

Vậy Min D là -50 <=>x=5

29 tháng 10 2017

Tìm Max

B= 5x-x^2

B=-(x^2-5x+25/4)-25/4

B= -(x-5/2)^2-25/4

Vì -(x-5/2)^2\(\le0\forall x\)

-> -(x-5/2)^2-25/4\(\le\)-25/4

Dấu = xẩy ra <=> x-5/2=0<=>x=5/2

Vậy Max B là -25/4 <=> x=5/2

C=-x^2-6x+10

C=-(x^2+6x+9)+19

C= -(x+3)^2+19

Vì -(x+3)^2\(\le\)0

=> -(x+3)^2+19\(\le\)19

Dấu = xảy ra <=> x+3=0<=>x=-3

D= -2x^x+8x+12

D=-2(x^2-4x+4)+20

D=-2(x-2)^2 +20

 Vì -2(x-2)^2\(\le\)0

=> -2(x-2)^2+20\(\le\)20

Dấu= xẩy ra<=> x-2=0<=>x=2

Vậy Max D là 20<=>x-2

26 tháng 8 2020

a) -x2 + 6x - 7 = -( x2 - 6x + 9 ) + 2 = -( x - 3 )2 + 2

-( x - 3 )2 ≤ 0 ∀ x => -( x - 3 )2 + 2 ≤ +2

Đẳng thức xảy ra <=> x - 3 = 0 => x = 3

Vậy GTLN của biểu thức = 2 <=> x = 3

b) 4x2 - 8x + 5 = 4( x2 - 2x + 1 ) + 1 = 4( x - 1 )2 + 1 

4( x - 1 )2 ≥ 0 ∀ x => 4( x - 1 )2 + 1 ≥ 1

Đẳng thức xảy ra <=> x - 1 = 0 => x = 1

Vậy GTNN của biểu thức = 1 <=> x = 1

c) 7 - x2 

-x2 ≤ 0 ∀ x => 7 - x2 ≤ 7

Đẳng thức xảy ra <=> x = 0

Vậy GTLN của biểu thức = 7 <=> x = 0

26 tháng 8 2020

a. \(-x^2+6x-7=-\left(x-3\right)^2+2\)

Vì \(\left(x-3\right)^2\ge0\forall x\)\(\Rightarrow-\left(x-3\right)^2+2\le2\)

Dấu "=" xảy ra \(\Leftrightarrow-\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)

Vậy GTLN của bt trên = 2 <=> x = 3

b. \(4x^2-8x+5=4\left(x-1\right)^2+1\)

Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow4\left(x-1\right)^2+1\ge1\)

Dấu "=" xảy ra \(\Leftrightarrow4\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy GTNN của bt trên = 1 <=> x = 1

c. \(7-x^2=-\left(x\right)^2+7\)

Vì \(\left(x\right)^2\ge0\forall x\)\(\Rightarrow-\left(x\right)^2+7\le7\)

Dấu "=" xảy ra \(\Leftrightarrow-\left(x\right)^2=0\Leftrightarrow x=0\)

Vậy GTLN của bt trên = 7 <=> x = 0

9 tháng 9 2017

\(b,Q=-5x^2-4x+1\)

\(=-5\left(x^2+\dfrac{4}{5}x+\dfrac{4}{25}\right)+\dfrac{9}{5}\)

\(=-5\left(x+\dfrac{2}{5}\right)^2+\dfrac{9}{5}\)

Với mọi giá trị của x ta có:

\(-5\left(x+\dfrac{2}{5}\right)^2\le0\)

\(\Rightarrow-5\left(x+\dfrac{2}{5}\right)^2+\dfrac{9}{5}\le\dfrac{9}{5}\)

Vậy MaxQ = \(\dfrac{9}{5}\)

Để Q = \(\dfrac{9}{5}\) thì \(x+\dfrac{2}{5}=0\Rightarrow x=-\dfrac{2}{5}\)

\(c,K=x\left(x-3\right)\left(x-4\right)\left(x-7\right)\)

\(=x\left(x-7\right)\left(x-3\right)\left(x-4\right)\)

\(=\left(x^2-7x\right)\left(x^2-7x+12\right)\)

Đặt \(x^2-7x+6=t\) , ta có:

\(K=\left(t-6\right)\left(t+6\right)\)

\(=t^2-36\)

\(=\left(x^2-7x+6\right)^2-36\)

Với mọi giá trị của x ta có:

\(\left(x^2-7x+6\right)^2\ge0\Rightarrow\left(x^2-7x+6\right)^2-36\ge-36\)

Vậy Min K = -36

Để K = - 36 thì \(x^2-7x+6=0\)

\(\Leftrightarrow x^2-x-6x+6=0\)

\(\Leftrightarrow x\left(x-1\right)-6\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-6\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=6\\x=1\end{matrix}\right.\)

a)\(P=2x^2-8x+1\)

=\(2\left(x^2-4x+4\right)-7\)

=\(2\left(x-2\right)^2-7\)

Với mọi x thì \(2\left(x-2\right)^2>=0\)

=>\(2\left(x-2\right)^2-7>=-7\)

Hay \(P>=-7\) với mọi x

Để \(P=-7\) thì

\(\left(x-2\right)^2=0\)

=>\(x-2=0\)

=>\(x=2\)

Vậy...

Các câu sau tương tự

30 tháng 12 2018

Bạn cộng 1 để tìm Min

trừ 4 để tìm Max

30 tháng 12 2018

cảm ơn bạn