Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(t=\sin^2x\Rightarrow\begin{cases}\cos^2x=1-t\\t\in\left[0;1\right]\end{cases}\) \(\Leftrightarrow f\left(x\right)=5^t+5^{1-t}=g\left(t\right);t\in\left[0;1\right]\)
Ta có : \(g'\left(t\right)=5^t\ln5-5^{1-t}\ln5=\left(5^t-5^{1-t}\right)\ln5=0\)
\(\Leftrightarrow5^t=5^{1-t}\)
\(\Leftrightarrow t=1-t\)
\(t=\frac{1}{2}\)
Mà \(\lim\limits_{x\rightarrow-\infty}g\left(t\right)=\lim\limits_{x\rightarrow-\infty}\left(5^t-5^{1-t}\right)=+\infty\)
\(\lim\limits_{x\rightarrow+\infty}g\left(t\right)=\lim\limits_{x\rightarrow+\infty}\left(5^t-5^{1-t}\right)=+\infty\)
Ta có bảng biến thiên
t g'(t) g(t) - 8 1 2 + 8 0 - + + 8 + 8 2 căn 5
\(\Rightarrow\) Min \(f\left(x\right)=2\sqrt{5}\) khi \(t=\frac{1}{2}\Leftrightarrow\sin^2x=\frac{1}{2}\Leftrightarrow\frac{1-\cos2x}{2}=\frac{1}{2}\)
\(\Leftrightarrow\cos2x=0\)
\(\Leftrightarrow x=\frac{\pi}{4}+\frac{k\pi}{2}\) \(\left(k\in Z\right)\)
Ta có :
\(f'\left(x\right)=\frac{-\frac{\frac{1}{x}}{2\sqrt{\ln x}}}{\ln x}=-\frac{1}{2x\ln x\sqrt{\ln x}}< 0\) với mọi \(x\in\left[e;e^2\right]\Rightarrow\) hàm số nghịch biến với mọi \(x\in\left[e;e^2\right]\)
\(e\le x\le e^2\Rightarrow f\left(e\right)\ge f\left(x\right)\ge f\left(e^2\right)\Leftrightarrow1\ge f\left(x\right)\ge\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow\begin{cases}Max_{x\in\left[e;e^2\right]}f\left(x\right)=1;x=e\\Min_{x\in\left[e;e^2\right]}f\left(x\right)=\frac{\sqrt{2}}{2};x=e^2\end{cases}\)
\(f\left(x\right)=\left(\ln x\right)^{-\frac{1}{2}}\Rightarrow f'\left(x\right)=-\frac{1}{2}\left(\ln x\right)^{-\frac{3}{2}}.\frac{1}{x}=-\frac{1}{2x\ln x\sqrt{\ln x}}\)
Ta có : \(\begin{cases}f\left(e\right)=1\\f\left(e^2\right)=\frac{\sqrt{2}}{2}\end{cases}\)
\(\Leftrightarrow\begin{cases}Max_{x\in\left[e;e^2\right]}f\left(x\right)=1;x=e\\Min_{x\in\left[e;e^2\right]}f\left(x\right)=\frac{\sqrt{2}}{2};x=e^2\end{cases}\)
\(f'\left(x\right)=1-\dfrac{9}{x^2}\)
\(f'\left(x\right)=0\Rightarrow x=\pm3\)
\(f''\left(x\right)=\dfrac{18}{x^3}\) \(\left\{{}\begin{matrix}f''\left(3\right)>0\\f''\left(-3\right)< 0\end{matrix}\right.\) vậy f(x) đạt cực tiểu tại x=3 trong khoảng đang xét hàm liên tục [2,4]
\(f\left(3\right)=3+\dfrac{9}{3}=6\)
\(\left\{{}\begin{matrix}f\left(2\right)=2+\dfrac{9}{2}=\dfrac{13}{2}\\f\left(4\right)=4+\dfrac{9}{4}=\dfrac{25}{4}< \dfrac{13}{2}\end{matrix}\right.\)
kết luận
GTLN f(x) trên đoạn [2,4] =\(\dfrac{13}{2}\)
GTNN f(x) trên đoạn [2,4] = \(6\)
\(f'\left(x\right)=1-\dfrac{9}{x^2}=\dfrac{x^2-9}{x^2}\)
\(f'\left(x\right)=0\Leftrightarrow x=\pm3\)
Hàm số nghịch biến trong các khoảng (-3; 0), (0; 3) và đồng biến trong các khoảng \(\left(-\infty;3\right)\left(3;+\infty\right)\)
Ta có bảng biến thiên:x | \(-\infty;-3;0\) | \(2;3;4;+\infty\) |
f'(x) | + 0 - | - - 0 + + |
f(x) | yCĐ | yCT +∞ |
Ta có: \(\left[2;4\right]\subset\left(0;+\infty\right);\left[{}\begin{matrix}f\left(2\right)=6,5\\f\left(3\right)=6\\f\left(4\right)=6,25\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\min\limits_{\left[2;4\right]}f\left(x\right)=f\left(3\right)=6\\\max\limits_{\left[2;4\right]}f\left(x\right)=f\left(2\right)=6,5\end{matrix}\right.\)
\(a^2=\left|z+\frac{1}{z}\right|^2=\left(z+\frac{1}{z}\right)\left(\overline{z}+\frac{1}{z}\right)=\left|z\right|^2+\frac{z^2+\overline{z}^2}{\left|z\right|^2}+\frac{1}{\left|z\right|^2}\)
\(=\frac{\left|z\right|^4+\left(z+\overline{z}\right)^2-2\left|z\right|^2+1}{\left|z\right|^2}\)
Do đó :
\(\left|z\right|^4-\left|z\right|^2\left(a^2+2\right)+1=-\left(z+\overline{z}\right)^2\le0\)
\(\Rightarrow\left|z\right|^2\in\left[\frac{a^2+2-\sqrt{a^4+4a^2}}{2};\frac{a^2+2+\sqrt{a^4+4a^2}}{2}\right]\)
\(\Rightarrow\left|z\right|\in\left[\frac{-a+\sqrt{a^4+4a^2}}{2};\frac{a+\sqrt{a^4+4a^2}}{2}\right]\)
max \(\left|z\right|=\frac{a+\sqrt{a^4+4a^2}}{2}\)
min \(\left|z\right|=;\frac{a+\sqrt{a^4+4a^2}}{2}\)
\(\Leftrightarrow z\in M,z=-\overline{z}\)
\(f\left(x\right)=\dfrac{2x-1}{x-3}=\dfrac{2\left(x-3\right)+5}{x-3}=1+\dfrac{5}{\left(x-3\right)}\)
f(x) có dạng \(y=\dfrac{5}{x}\Rightarrow\) f(x) luôn nghịch biến
Tất nhiên bạn có thể tính đạo hàm --> f(x) <0 mọi x khác -3
f(x) luôn nghich biến [0;2] < -3 thuộc nhánh Bên Phải tiệm cận đứng
\(\Rightarrow\left\{{}\begin{matrix}Max=f\left(0\right)=\dfrac{1}{3}\\Min=f\left(2\right)=-3\end{matrix}\right.\)
1. \(f\left(x\right)=e^{2-3x}\) trên đoạn \(\left[0;2\right]\)
Ta có :
\(f'\left(x\right)=-3e^{2-3x}< 0\) với \(x\in R\Rightarrow\) hàm số nghịch biến trên đoạn \(\left[0;2\right]\)
Với \(0\le x\le2\Leftrightarrow f\left(0\right)\ge f\left(x\right)\ge f\left(2\right)\Leftrightarrow e^2\ge f\left(x\right)\ge\frac{1}{e^4}\)
\(\Leftrightarrow\begin{cases}Max_{x\in\left[0;2\right]}f\left(x\right)=e^2;x=0\\Min_{x\in\left[0;2\right]}f\left(x\right)=\frac{1}{e^4};x=2\end{cases}\)
2. \(f\left(x\right)=e^{\sqrt{1-x^2}}\) trên đoạn \(\left[-1;1\right]\)
Ta có :
\(f'\left(x\right)=\frac{-x}{\sqrt{1-x^2}}e^{\sqrt{1-x^2}}=0\Leftrightarrow x=0\in\left[-1;1\right]\)
Mà : \(\begin{cases}f\left(-1\right)=1\\f\left(0\right)=e\\f\left(1\right)=1\end{cases}\) \(\Leftrightarrow\begin{cases}Max_{x\in\left[-1;1\right]}f\left(x\right)=e;x=0\\Min_{x\in\left[-1;1\right]}f\left(x\right)=1;x=\pm1\end{cases}\)
Do \(\sqrt{\pi}>1\) nên theo tính chất về lũy thừa số thực, ta có :
* Vì \(\cos x\ge1,x\in R\) nên \(A=\left(\sqrt{\pi}\right)^{\cos x}\ge\left(\sqrt{\pi}\right)^{-1}=\frac{1}{\sqrt{\pi}}\)
Giá trị nhỏ nhất của A là \(\frac{1}{\sqrt{\pi}}\) đạt được khi \(\cos x=-1\Leftrightarrow x=\pi+2k\pi,k\in Z\)
* Vì \(\cos x\le1,x\in R\) nên \(A=\left(\sqrt{\pi}\right)^{\cos x}\le\left(\sqrt{\pi}\right)^1=\sqrt{\pi}\)
Giá trị nhỏ nhất của A là \(\sqrt{\pi}\) đạt được khi \(\cos x=1\Leftrightarrow x=2k\pi,k\in Z\)