Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=-x^2+10x-5=-\left(x^2-10+5\right)\)
\(=-\left(x^2-10x+25-20\right)\)
\(=-\left[\left(x-5\right)^2-20\right]\)
\(=-\left(x-5\right)^2+20\le20\)
Vậy \(C_{max}=20\Leftrightarrow x-5=0\Leftrightarrow x=5\)
c: \(-x^2+2x-2=-\left(x-1\right)^2-1\le-1\forall x\)
\(\Leftrightarrow V\ge-1\forall x\)
Dấu '=' xảy ra khi x=1
b: Ta có: \(x^2-x+5\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{19}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\forall x\)
\(\Leftrightarrow\dfrac{2022}{\left(x-\dfrac{1}{2}\right)^2+\dfrac{19}{4}}\le\dfrac{8088}{19}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
C=x2-2x-5
=x2-5x+3x-15+10
=x(x-5)+3(x-5)+10
=(x+3)(x-5)+10<=10
DBXRK x=5
\(6x-x^2-5=-x^2+6x-5\)
\(=-x^2+6x-9+4\)
\(=-\left(x^2-6x+9\right)+4\)
\(=-\left(x-3\right)^2+4\)
Vì: \(-\left(x-3\right)^2+4\le4\forall x\)
=> Max =4 tại \(-\left(x-3\right)^2=0\Rightarrow x=3\)
=.= hok tốt!!