Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(|x-5|\ge0;\forall x\Rightarrow|x-5|+25\ge25;\forall x\Rightarrow A\ge25,\forall x\)
GTNN của A là 25 khi và chỉ khi x=5
\(\left(x-2\right)^2\ge0;\forall x\Rightarrow\left(x-2\right)^2-16\ge-16;\forall x\Rightarrow B\ge-16,\forall x\)
GTNN của B là -16 khi x=2
b) \(|x+3|\ge0;\forall x\Rightarrow-|x+3|-5\le-5;\forall x\Rightarrow C\le-5,\forall x\)
GTLN của C là -5 khi và chỉ khi x=-3
\(\left(x+1\right)^2\ge0;\forall x\Rightarrow-\left(x+1\right)^2\le0;\forall x\Rightarrow D\le14,\forall x\)
GTLN của D là 14 khi và chỉ khi x = -1
a, Tìm giá trị nhỏ nhất của biểu thức:
A = \(|x-5|+25\)
Để A nhỏ nhất \(\Rightarrow\)\(|x-5|+25\)nhỏ nhất
\(\Rightarrow\)\(|x-5|\)nhỏ nhất
Mà \(|x-5|\)\(\ge0\forall x\inℤ\)
\(\Rightarrow\) \(|x-5|\)\(=0\) (1)
Thay (1) vào A, ta có:
A = 0 + 25
A = 25
Vậy giá trị nhỏ nhất của A là 25
\(B=-16+\left(x-2\right)^2\)
Để B nhỏ nhất \(\Rightarrow\)\(-16+\left(x-2\right)^2\)nhỏ nhất
\(\Rightarrow\left(x-2\right)^2\)nhỏ nhất
Mà \(\left(x-2\right)^2\)\(\ge0\forall x\inℤ\)
\(\Rightarrow\left(x-2\right)^2\)\(=0\) (2)
Thay (2) vào B, ta có :
B = \(-16+0\)
B = \(-16\)
Vậy giá trị nhỏ nhất của B là -16
Ta có : A = | x - 3 | + 10 > 0
Vì | x - 3 |\(\ge\)0
Dấu = Xảy ra <=> x = 3
Vậy gtnn của A = 10 <=> x = 3
Vì \(\left|x-3\right|\ge0\left(\forall x\right)\)
\(\Rightarrow A=\left|x-3\right|+10\ge10\)
Dấu "=" xảy ra \(\Leftrightarrow\left|x-3\right|=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy Amin =10 khi và chỉ khi x = 3
Vì \(\left(x-1\right)^2\ge0\left(\forall x\right)\Rightarrow B=-7+\left(x-1\right)^2\ge-7\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy Bmin = -7 khi và chỉ khi x = 1
Vì \(\left|x-2\right|\ge0\left(\forall x\right)\Rightarrow C=-3-\left|x-2\right|\le-3\)
Dấu "=" xảy ra \(\Leftrightarrow\left|x-2\right|=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy Cmax = -3 khi và chỉ khi x = 2
Vì \(\left(x-2\right)^2\ge0\left(\forall x\right)\Rightarrow15-\left(x-2\right)^2\le15\)
Dấu "=" xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy Dmax = 15 khi và chỉ khi x = 2
c,\(43+x=2.5^2-\left(x-57\right)\)
\(< =>43+x=50-x+57\)
\(< =>2x=50+57-43\)
\(< =>x=\frac{107-43}{2}=32\)
d,\(-3.2^2\left(x-5\right)+7\left(3-x\right)=5\)
\(< =>-12.\left(x-5\right)+7.\left(3-x\right)=5\)
\(< =>-12x+60+21-7x=5\)
\(< =>-19x=5-81=-76\)
\(< =>x=-\frac{76}{-19}=4\)
Bài 2:
a) \(A=\left|x-3\right|+10\)
Vì \(\left|x-3\right|\ge0\forall x\)\(\Rightarrow\left|x-3\right|+10\ge10\forall x\)
hay \(A\ge10\)
Dấu " = " xảy ra \(\Leftrightarrow x-3=0\)\(\Leftrightarrow x=3\)
Vậy \(minA=10\Leftrightarrow x=3\)
b) \(B=-7+\left(x-1\right)^2\)
Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow-7+\left(x-1\right)^2\ge-7\forall x\)
hay \(B\ge-7\)
Dấu " = " xảy ra \(\Leftrightarrow x-1=0\)\(\Leftrightarrow x=1\)
Vậy \(minB=-7\Leftrightarrow x=1\)
Bài giải
Câu F mình làm ở câu trước của bạn rồi nên giờ mình trả lời tiếp luôn nha ! Bài tìm GTLN tí nữa mifh làm cho ! Đang bận !
Câu 1 : Tìm GTNN
\(H=\left|2x+5\right|+\left|8-2x\right|\)
Áp dụng tính chất \(\left|A\right|\ge A\)Ta có :
\(\left|2x+5\right|\ge2x+5\text{ Dấu " = " xảy ra khi }2x+5\ge0\text{ }\Rightarrow\text{ }2x\ge-5\text{ }\Rightarrow\text{ }x\ge-\frac{5}{2}\)
\(\left|8-2x\right|\ge8-2x\text{ Dấu " = " xảy ra khi }8-2x\ge0\text{ }\Rightarrow\text{ }2x\le8\text{ }\Rightarrow\text{ }x\le4\)
\(\Rightarrow\text{ }\left|2x+8\right|+\left|8-2x\right|\ge2x+5+8-2x\)
\(\Rightarrow\text{ }\left|2x+8\right|+\left|8-2x\right|\ge13\text{ Dấu " = " xảy ra khi }-\frac{5}{2}\le x\le4\)
\(\text{Vậy }Min\text{ }H=13\text{ khi }-\frac{5}{2}\le x\le4\)
a, A =I x - 3I +10
\(\Rightarrow A\ge10\)( I x - 3 I luôn lớn hơn hoặc bằng 0 vs mọi x)
Dấu ''='' xảy ra khi x-3=0
<=>x = 3
Vậy giá trị nhỏ nhất của A là 10 khi x = 3
b, \(B=-7+\left(x-1\right)^2\)
\(\Rightarrow B\ge-7\forall x\)
Dấu ''='' xảy ra khi và chỉ khi \(x-1=0\Leftrightarrow x=1\)
Vậy giá trị nhỏ nhất của B là -7 khi x=1
c, C= -3 - I x -2I
\(\Rightarrow C\le-3\)( Vì I x - 2 I luôn luôn lớn hơn hoặc bằng 0 với mọi x)
Dấu ''='' xảy ra khi và chỉ khi : x - 2 = 0 <=> x=2
Vây giá trị lớn nhất của C là - 3 khi x = 2.
d, \(D=15-\left(x-2\right)^2\)
\(\Rightarrow D\le15\)
Dấu ''='' xảy ra khi và chỉ khi : x - 2 =0 <=> x =2
Vây giá trị lớn nhất của D là 15 khi x = 2
a) Ta có: \(-\left|x\right|\le0\)
\(-\left(y+4\right)^4\le0\)
\(\Rightarrow-\left|x\right|-\left(y+4\right)^4\le0\)
\(\Rightarrow A=10-\left|x\right|-\left(y+4\right)^4\le10\)
Vậy \(MAX_A=10\) khi \(x=0;y=-4\)
b) Hình như sai đề thì phải
a) Vì \(\left(x-3\right)^2\ge0\)
\(\Rightarrow\left(x-3\right)^2+2018\ge2018\)
Dấu "=" xảy ra khi \(x-3=0\)
\(\Rightarrow x=3\)
Vậy với nghiệm nguyên \(x=3\)thì phương trình đạt GTNN là A=2018
b)Vì \(\left|x-5\right|\ge0\)
\(\Rightarrow\left|x-5\right|+2016\ge2016\)
Dấu "=" xảy ra khi \(x-5=0\)
\(\Rightarrow x=5\)
Vậy với nghiệm nguyên \(x=5\)thì phương trình đạt GTNN là B=2016
c) \(\text{C}=\frac{7}{x-3}\)nhỏ nhất khi \(x-3\)âm và đạt giá trị lớn nhất
\(\Rightarrow x-3< 0\)
Mà \(x\in Z\)
\(\Rightarrow x-3\le-1\)
Dấu "=" xảy ra khi \(x=-1+3=2\)
Vậy với nghiệm nguyên \(x=2\)thì phương trình đạt GTNN là \(\text{C}=\frac{7}{2-3}=-7\)
d)\(\text{D}=\frac{x+8}{x-5}=\frac{x-5+13}{x-5}=\frac{x-5}{x-5}+\frac{13}{x-5}=1+\frac{13}{x-5}\)
D nhỏ nhất khi \(1+\frac{13}{x-5}\)nhỏ nhất
\(1+\frac{13}{x-5}\)nhỏ nhất khi \(\frac{13}{x-5}\)nhỏ nhất
\(\frac{13}{x-5}\)nhỏ nhất khi \(x-5\)âm và đạt GTLN
\(\Rightarrow x-5< 0\)
Mà \(x\in Z\)
\(\Rightarrow x-5\le-1\)
Dấu "=" xảy ra khi \(x=-1+5=4\)
Vậy với \(x=4\)thì biểu thức đạt GTNN là \(\text{D}=1+\frac{4+8}{4-5}=1+\frac{12}{-1}=1-12=-11\)
~Học tốt^^~
Phần kết luận: Vậy với x=...... thì "biểu thức"...
em sửa lại từ phương trình -> biểu thức nha :v a ghi vội nên không để ý
a) Ta có: \(\left|x+5\right|\ge0\)
\(\Rightarrow A=\left|x+5\right|+6\ge6\)
Vậy \(MIN_A=6\) khi x = -5
b) Ta có: \(-\left|x+1\right|\le0\)
\(\Rightarrow B=7-\left|x+1\right|\le7\)
Vậy \(MAX_B=7\) khi x = -1
c) Ta có: \(-\left|x-5\right|\le0\)
\(\Rightarrow C=8-\left|x-5\right|\le8\)
Vậy \(MAX_C=8\) khi x = 5