\(\frac{3x^2+6x+10}{x^2+2x+3}\)

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2017

Ta có :

\(2B=\frac{6x^2+12x+20}{x^2+2x+3}=\frac{7x^2+14x+21-x^2-2x-1}{x^2+2x+3}=\frac{7\left(x^2+2x+3\right)-\left(x+1\right)^2}{x^2+2x+3}\)

\(=7-\frac{\left(x+1\right)^2}{x^2+2x+3}\le7\) (Vì \(\frac{\left(x+1\right)^2}{x^2+2x+3}\ge0\))

Do \(2B\le7\Rightarrow B\le\frac{7}{2}\)đạt GTLN là \(\frac{7}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\frac{\left(x+1\right)^2}{x^2+2x+3}=0\Rightarrow x=-1\)

Vậy GTLN của \(B\) là \(\frac{7}{2}\) tại \(x=-1\)

28 tháng 12 2017

\(P_1=\frac{3x^2+6x+10}{x^2+2x+3}\)

      \(=3+\frac{1}{x^2+2x+3}\)

Lại có: \(x^2+2x+3\)

          \(=\left(x+1\right)^2+2\ge2\)

\(\Rightarrow P_1\le3+\frac{1}{2}=\frac{7}{2}\)

Dấu = xảy ra khi x=-1

P2 tương tự

17 tháng 10 2018

Ta có: \(A=\frac{3x^2+6x+11}{x^2+2x+3}=3+\frac{2}{x^2+2x+3}=3+\frac{2}{\left(x+1\right)^2+2}\)

Đặt \(B=\frac{2}{\left(x+1\right)^2+2}\),để A đạt giá trị lớn nhất thì B lớn nhất.

Mà B lớn nhất khi \(\left(x+1\right)^2+2\) bé nhất. 

Lại có: \(\left(x+1\right)^2\ge0\forall x\Rightarrow\left(x+1\right)^2+2\ge2\) (1)

Từ (1) suy ra: \(B\le\frac{2}{2}=1\Rightarrow A=3+B\le3+1=4\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x=-1\)

Vậy \(A_{max}=4\Leftrightarrow x=-1\)

2 tháng 7 2018

a,\(M=-2x^2+2x-3\)

\(\Rightarrow2M=-4x^2+4x-6=-\left(4x^2-4x+1\right)-5=-\left(2x-1\right)^2-5\)

\(-\left(2x-1\right)^2\le0\Rightarrow2M=-\left(2x-1\right)^2-5\le-5\Rightarrow M\le-\frac{5}{2}\)

Dấu "=" xảy ra khi x=1/2

Vậy Mmax=-5/2 khi x=1/2

b, \(N=3x-x^2-4=-x^2+3x-4=-\left(x^2-3x+\frac{9}{4}\right)-\frac{7}{4}=-\left(x-\frac{3}{2}\right)^2-\frac{7}{4}\)

Vì \(-\left(x-\frac{3}{2}\right)^2\le0\Rightarrow N=-\left(x-\frac{3}{2}\right)^2-\frac{7}{4}\le-\frac{7}{4}\)

Dấu "=" xảy ra khi x=3/2

Vậy Nmax=-7/4 khi x=3/2

c, \(P=\frac{3}{x^2-6x+10}=\frac{3}{x^2-6x+9+1}=\frac{3}{\left(x-3\right)^2+1}\)

Vì \(\left(x-3\right)^2\ge0\Rightarrow\left(x-3\right)^2+1\ge1\Rightarrow\frac{1}{\left(x-3\right)^2+1}\le1\Rightarrow\frac{3}{\left(x-3\right)^2+1}\le3\)

Dấu "=" xảy ra khi x=3

Vậy Pmax=3 khi x=3

29 tháng 5 2017

Ta có :

\(\frac{3x^2-6x+17}{x^2-2x+5}=3+\frac{2}{x^2-2x+5}\)

Biểu thức đạt giá trị lớn nhất 

<=> x2 - 2x + 5 nhỏ nhất 

Ta lại có :

x2 - 2x + 5 = x2 - 2x + 1 + 4 = (x - 1)2 + 4 

Vì \(\left(x-1\right)^2\ge0\)

=> \(\left(x-1\right)^2+4\ge4\)

=> \(Min=4\)

Vậy giá trị lớn nhất của biểu thức là :

\(3+\frac{2}{4}=3+\frac{1}{2}=\frac{7}{2}\)

29 tháng 5 2017

\(\frac{3x^2-6x+17}{x^2-2x+5}=\frac{3\left(x^2-2x+5\right)+2}{x^2-2x+5}=3+\frac{2}{x^2-2x+5}=3+\frac{2}{\left(x-1\right)^2+4}\) (1)

Vì \(\left(x-1\right)^2+4\ge4\forall x\)

\(\Rightarrow\frac{2}{\left(x-1\right)^2+4}\le\frac{2}{4}=\frac{1}{2}\forall x\)

\(\Rightarrow3+\frac{2}{\left(x-1\right)^2+4}\le3+\frac{1}{2}=\frac{7}{2}\forall x\)

Dấu "=" xảy ra <=> \(x=1\)

Vậy ..........

25 tháng 3 2020

C = \(\frac{2}{6x-5-9x^2}=\frac{2}{-\left(9x^2-6x+1\right)-4}=\frac{2}{-\left(3x-1\right)^2-4}\ge-\frac{1}{2}\forall x\)

Dấu "=" xảy ra <=> 3x - 1 = 0 =<=> x = 1/3

Vậy MinC = -1/2 khi x = 1/3

M = \(\frac{3}{2x^2+2x+3}=\frac{3}{2\left(x^2+x+\frac{1}{4}\right)+\frac{5}{2}}=\frac{3}{2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}}\le\frac{3}{\frac{5}{2}}=\frac{6}{5}\forall x\)

Dấu "=" xảy ra <=> x + 1/2= 0 <=> x = -1/2

Vậy MaxM = 6/5 khi x = -1/2

N = x  - x2 = -(x2 - x + 1/4) + 1/4 = -(x - 1/2)2 + 1/4 \(\le\)1/4 \(\forall\)x

Dấu "=" xảy ra <=> x - 1/2 = 0 <=> x = 1/2

Vậy MaxN = 1/4 khi x = 1/2

25 tháng 3 2020

Edogawa Conan giúp em luôn bài giá trị lớn nhất luôn được không ạ?

26 tháng 1 2020

câu 1 x phải là dấu lớn hơn hoặc bằng mới giải được

2. xét x^2- 6x + 10

= X^2 -6x +9 +1

=(x^2 -3 )^2 +1

Nhận xét ( x^2 - 3) ^2 luôn luôn lớn hơn hoặc bằng 0 với moi x thuộc R

=> ( x^2 -3)^2+1 luôn luôn lớn hơn hoặc bằng 1 với mọi x thuộc R

=> \(\frac{2018}{X^2-6x+10}\)luôn luôn bé hơn hoặc bằng 2018 với mọi x thuộc R ( 2018/1)

=> P luôn luôn bé hơn hoặc bằng 2018với mọi x thuộc R

Dấu " =" xảy ra khi ( \(\left(x-3\right)^2\)=0

=> x-3 = 0

=> x=3

Vậy giá tị lớn nhất của P là 1 đạt được khi x=3

\(P=\frac{2}{x^2+6x+12}\)

\(=\frac{2}{x^2+2.x.3+9+3}\)

\(=\frac{2}{\left(x+3\right)^2+3}\ge\frac{2}{3}\)

26 tháng 3 2017

a) gtln 2/3 khi x = -3

b) gtln 7 khi x=-1

nhé

13 tháng 12 2021

\(\text{A.}\)\(\text{x3+6x2+3x−10}\)