K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2018

a) -x2+x=-(x2-x+1/4)+1/4=-(x-1/2)2+1/4 <=1/4 
b) -2x2+2x-5=-2(x2-x+1/4)+1/2-5=-2(x-1/2)2-4,5<=-4,5

6 tháng 5 2020

\(A=\left[\frac{6x^2}{x^3-1}-\frac{2x-2}{x^2+x+1}-\frac{1}{x-1}\right]:\frac{x^2+9}{\left(x-1\right)\left(9-4x\right)}\)

\(=\left[\frac{6x^2}{x^3-1}-\frac{\left(2x-2\right)\left(x-1\right)}{\left(x^2+x+1\right)\left(x-1\right)}-\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right]\cdot\frac{\left(x-1\right)\left(9-4x\right)}{x^2+9}\)

\(=\frac{6x^2-\left(2x^2-4x+2\right)-x^2-x-1}{\left(x^2+x+1\right)\left(x-1\right)}\cdot\frac{\left(x-1\right)\left(9-4x\right)}{x^2+9}\)

\(=\frac{5x^2-2x^2+4x-2-x-1}{\left(x^2+x+1\right)}\cdot\frac{\left(9-4x\right)}{x^2+9}\)

\(=\frac{3x^2+3x-3}{\left(x^2+x+1\right)}\cdot\frac{\left(9-4x\right)}{x^2+9}\)

Biểu thức A bạn viết đúng chưa?

22 tháng 12 2021

\(P=2017-2x^2+4x-8y^2-8y\\ P=-2\left(x^2-2x+1\right)-2\left(4y^2+4y+1\right)+2021\\ P=-2\left(x-1\right)^2-2\left(2y+1\right)^2+2021\le2021\\ P_{max}=2021\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-\dfrac{1}{2}\end{matrix}\right.\)

a)A=−x2−2x+5a)A=−x2−2x+5

=−x2−2x−1+6=−x2−2x−1+6

=−(x2+2x+1)+6=−(x2+2x+1)+6

=−(x+1)2+6=−(x+1)2+6

Ta có: (x+1)2(x+1)2 ≥0≥0 

-> −(x+1)2−(x+1)2 ≤0≤0 

-> −(x+1)2+6−(x+1)2+6 ≤6≤6 

Dấu bằng xảy ra khi: x+1=0x+1=0 

                             ⇔ x=−1x=−1 

b)B=9x−3x2+4b)B=9x−3x2+4

=−3x2+9x−=−3x2+9x− 274+274+ 434434

=−(3x2−9x+274)+434=−(3x2−9x+274)+434

=−3(x2−3x+94)+434=−3(x2−3x+94)+434

=−3(x−32)2+434=−3(x−32)2+434

Ta có: (x−32)2(x−32)2 ≥0≥0 

-> −3(x−32)2−3(x−32)2 ≤0≤0 

-> −3(x−32)2+434−3(x−32)2+434 ≤434≤434 

Dấu bằng xảy ra khi: x−32=0x−32=0 

                             ⇔ x=32x=32 

Chúc bạn học tốt !!!!!

8 tháng 10 2021

88+16=

22 tháng 6 2016

a) A=-(x2-4x-7)=\(-\left[\left(x-2\right)^2-11\right]=-\left(x-2\right)^2+11\)

ta có -(x-2)2 \(\le\)0

-> -(x-2)2+11 \(\le\)11

--> A\(\le\)​11

vậy GTLN của A là 11

b) B= - (x2-5x+127)= - (x-5/2)2-483/4

c) C= - (x2+4x) = - (x+2)2+4

30 tháng 6 2021

\(1.\)

\(-17-\left(x-3\right)^2\)

Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)

\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)

\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)

Dấu '' = '' xảy ra khi: 

\(\left(x-3\right)^2=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Vậy \(Max=-17\)khi \(x=3\)

30 tháng 6 2021

\(2.\)

\(A=x\left(x+1\right)+\frac{3}{2}\)

\(A=x^2+x+\frac{3}{2}\)

\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)

28 tháng 9 2019

A = 9x2 + 6x + 15

A = [(3x + 6x + 1] + 14

A = (3x + 1)2 + 14 \(\ge\)14

Dấu = xảy ra \(\Leftrightarrow\)3x + 1 = 0

                        \(\Rightarrow\)3x = - 1

                       \(\Rightarrow\)x = - 1 / 3

Min A = 14 \(\Leftrightarrow\)x = - 1 / 3

20 tháng 10 2015

\(\frac{2}{8x-4x^2-5}\)

Xét mẫu:    \(8x-4x^2-5=-4x^2+8x-4-1=-\left(4x^2-8x+4\right)-1=-\left(2x-2\right)^2-1\)

 \(-\left(2x-2\right)^2\le0\Rightarrow-\left(2x-2\right)^2-1\le-1\)

 Nên  \(\frac{2}{8x-4x^2-5}\le\frac{2}{-1}\le-2\)

Vậy giá trị lớn nhất của \(\frac{2}{8x-4x^2-5}\)-2

14 tháng 12 2017

\(A=\frac{3x^2+8x+6}{x^2+2x+1}\) \(\left(x\ne\pm1\right)\)

\(A=\frac{\left(3x^2+6x+3\right)+\left(2x+3\right)}{\left(x+1\right)^2}\)

\(A=\frac{3\left(x+1\right)^2+2x+3}{\left(x+1\right)^2}\)

\(A=3+\frac{2x+3}{\left(x+1\right)^2}\)

\(\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow3+\frac{2x+3}{\left(x+1\right)^2}\ge3\Leftrightarrow A\ge3\)

Dấu "="xảy ra khi \(2x+3=0\Rightarrow x=\frac{-3}{2}\)

14 tháng 12 2017

Gọi k là một giá trị của A ta có: 

\(\frac{\left(3x^2-8x+6\right)}{\left(x^2+2x+1\right)}=k\)

\(\Leftrightarrow3x^2-8x+6=k\left(x^2-2x+1\right)\)

\(\Leftrightarrow\left(3-k\right)x^2-\left(8-2k\right)x+6-k=0\)(*)

Ta cần tìm k để PT (*) có nghiệm 
Xét: \(\Delta=\left(8-2k\right)^2-4\left(3-k\right)\left(6-k\right)=64-32k+4k^2-4\left(18-9k+k^2\right)=4k-8\)

Để PT (*) có nghiệm thì: \(\Delta\ge0\Leftrightarrow4k-8\ge0\Leftrightarrow k\ge2\)

Dấu "=" xảy ra khi: \(-\left(8-2.2\right)x+6-2=0\Leftrightarrow-4x+4=0\Rightarrow x=1\)

Vậy: \(B\ge2\)suy ra: B = 2 khi x = 1