Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, \(3x^2-5x+4\)
\(=3\left(x^2-\frac{5}{3}x\right)+1=3\left(x^2-2.\frac{5}{6}x+\frac{25}{36}\right)+\frac{23}{12}=3\left(x-\frac{5}{6}\right)^2+\frac{23}{12}\)
Ta có: \(3\left(x-\frac{5}{6}\right)^2\ge0\forall x\Leftrightarrow3\left(x-\frac{5}{6}\right)^2+\frac{23}{12}\ge\frac{23}{12}\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-\frac{5}{6}\right)^2=0\Leftrightarrow x-\frac{5}{6}=0\Leftrightarrow x=\frac{5}{6}\)
Vậy minA = \(\frac{23}{12}\Leftrightarrow x=\frac{5}{6}\)
2, Bạn thử kiểm tra lại đề bài xem
a 2x-x^2-4 = - (x^2-2x+4)= -(x-2)^2
để -(x-2)^2 lớn nhất suy ra (x-2)^2 nhỏ nhất suy ra (x-2)^2 nhỏ nhất là 0 suy ra -(x-2)^2 nhỏ nhất là 0
b 1-4x-5x^2= 1 -(4x +5x^2) = 1- 4x( 1 + 5/4x)
để b lớn nhất suy ra 1-4x(1+5/4x) lớn nhất suy ra 4x(1+5/4x ) nhỏ nhất
nếu 4x âm suy ra x âm vì 5/4>1 nếu x âm suy ra -5/4x > 1 suy ra x âm thì 1+5/4 x âm suy ra b dương
4x dương suy ra x dương suy ra 1+5/4x dương suy ra b dương
vậy 4x(1+5/4x) k thể âm để 4x(1+5/4x) nhỏ nhất suy ra 4x(1+5/4x) = 0
4x = 0 suy ra x=0 1+5/4x = 0 suy ra 5/4x = -1 suy ra x=-4/5
suy ra b nhỏ nhất là 1-0 = 1
tìm gí trị nhỏ nhất
Ta có \(A=x^2+x+1=x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)\(\Rightarrow A\ge\frac{3}{4}\)
Dấu"=" xảy ra khi và chỉ khi \(\left(x+\frac{1}{2}\right)^2=0\Leftrightarrow x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}\)
Vậy giá trị nhỏ nhất của A là \(\frac{3}{4}\) tại \(x=-\frac{1}{2}\)
Ta có \(B=4x^2-3x+2=4x^2-2.2x.\frac{3}{4}+\frac{9}{16}+\frac{23}{16}=\left(2x-\frac{3}{4}\right)^2+\frac{23}{16}\)
Vì \(\left(2x-\frac{3}{4}\right)^2\ge0\Rightarrow\left(2x-\frac{3}{4}\right)^2+\frac{23}{16}\ge\frac{23}{16}\Rightarrow B\ge\frac{23}{16}\)
Dấu "=" xảy ra khi và chỉ khi \(\left(2x-\frac{3}{4}\right)^2=0\Leftrightarrow2x-\frac{3}{4}=0\Leftrightarrow2x=\frac{3}{4}\Leftrightarrow x=\frac{3}{8}\)
Vậy giá trị nhhor nhất của B là \(\frac{23}{16}\)tại \(x=\frac{3}{8}\)
Ta có \(C=3x^2+x-1=3\left(x^2+\frac{1}{3}x-\frac{1}{3}\right)=3\left(x^2+2.\frac{1}{6}x+\frac{1}{36}-\frac{13}{36}\right)=3\left(x+\frac{1}{6}\right)^2-\frac{13}{12}\)
Vì \(\left(x+\frac{1}{6}\right)^2\ge0\Leftrightarrow3\left(x+\frac{1}{6}\right)^2\ge0\Leftrightarrow3\left(x+\frac{1}{6}\right)^2-\frac{13}{12}\ge-\frac{13}{12}\)
Dấu "=" xảy ra khi và chỉ khi \(x+\frac{1}{6}=0\Leftrightarrow x=-\frac{1}{6}\)
Vậy giá trị nhỏ nhất của C là \(-\frac{13}{12}\)tại \(x=-\frac{1}{6}\)
tìm giá trị lớn nhất
Ta có \(A=x+1-x^2=-\left(x^2-x-1\right)=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x-\frac{1}{2}\right)^2+\frac{5}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow-\left(x+\frac{1}{2}\right)^2\le0\Leftrightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\)
Dấu "=" xảy ra khi và chỉ khi \(x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}\)
Vậy giá trị lớn nhất của A là \(\frac{5}{4}\)tại \(x=-\frac{1}{2}\)