K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2017

\(-x^2 -3y^2 -2xy +10x +16y +18 \)

\(=-x^2-2xy+10x-y^2+10y-25-2y^2+6y+43\)

\(=-\left(x^2+2xy-10x+y^2-10y+25\right)-2\left(y^2-3y-\dfrac{43}{2}\right)\)

\(=-\left[\left(x^2+2xy+y^2\right)-\left(10x+10y\right)+25\right]-2\left(y^2-3y+\dfrac{9}{4}-\dfrac{95}{4}\right)\)

\(=-\left[\left(x+y\right)^2-10\left(x+y\right)+25\right]-2\left(y^2-3y+\dfrac{9}{4}\right)+\dfrac{95}{2}\)

\(=-\left(x+y-5\right)^2-2\left(y-\dfrac{3}{2}\right)^2+\dfrac{95}{2}\le\dfrac{95}{2}\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}-\left(x+y-5\right)^2=0\\-2\left(y-\dfrac{3}{2}\right)^2=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{7}{2}\\y=\dfrac{3}{2}\end{matrix}\right.\)

-2A=2x2+6y2+4xy-20x-28y+36

=(x2+4xy+4y2)+(x2-20x+100)+2(y2-14y+49)-162

=(x+2y)2+(x-10)2+2(y-7)2-162\(\ge\)-162

=> A\(\le81\)

Dấu "=" xảy ra khi

17 tháng 8 2018

 Thay \(x=5-3y\) vào A 

\(A=\left(5-3y\right)^2+y^2+16y+2\left(5-3y\right)\)

.......

4 tháng 10 2018

mk lm mẫu cho bạn 1 phần nhé

a) \(A=3x^2+y^2+10x-2xy+26\)

\(=\left(x^2-2xy+y^2\right)+2\left(x^2+5x+6,25\right)+13,5\)

\(=\left(x-y\right)^2+2\left(x+2,5\right)^2+13,5\ge13,5\)

Dấu "=" xảy ra <=>  \(x=y=-2,5\)

Vậy MIN A = 13,5  khi  x = y = - 2,5

4 tháng 10 2018

Cảm ơn Đường Quỳnh Giang nhiều nhé😊