Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x+5y=21 và 2x+3z=51
=> x+5y+2x+3z=21+51
<=> 3x+3y+3z+2y=72
<=> 3(x+y+z)=72-2y
=> \(x+y+z=\frac{72-2y}{3}=24-\frac{2y}{3}\)
=> \(A=\left(x+y+z\right)^2=\left(24-\frac{2y}{3}\right)^2\)
Do \(y\ge0\)=> Để A đạt GTLN thì y đạt GTNN
Mà GTNN của y là y=0 => \(A_{max}=\left(24-\frac{2y}{3}\right)^2=\left(24-\frac{2}{3}.0\right)^2=24^2=576\)
Đáp số: Amax=576
Áp dụng bđt AM-GM ta có:
\(\sqrt[3]{\left(5x+3y\right).8.8}\le\frac{5x+3y+8+8}{3}\)
\(\sqrt[3]{\left(5y+3z\right).8.8}\le\frac{5y+3z+8+8}{3}\)
\(\sqrt[3]{\left(5z+3x\right).8.8}\le\frac{5z+3x+8+8}{3}\)
Cộng từng vế các đẳng thức trên ta được:
\(4N\le\frac{8\left(x+y+z\right)+48}{3}=24\)
\(\Rightarrow N\le6\)
Dấu"="xảy ra \(\Leftrightarrow x=y=z=1\)
x, y, z \(\ge\)0 là đúng đấy
và bạn có thể giải bằng BĐT Cauchy đc ko
a)
\(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\)
\(\Leftrightarrow\left(x^3+3x^2+3x+1\right)+\left(y^3+3y^2+3y+1\right)+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+1\right)^3+\left(y+1\right)^3+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\right]+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1\right]=0\)
Lại có :\(\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1=\left[\left(x+1\right)-\frac{1}{2}\left(y+1\right)\right]^2+\frac{3}{4}\left(y+1\right)^2+1>0\)
Nên \(x+y+2=0\Rightarrow x+y=-2\)
Ta có :
\(M=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=\frac{-2}{xy}\)
Vì \(4xy\le\left(x+y\right)^2\Rightarrow4xy\le\left(-2\right)^2\Rightarrow4xy\le4\Rightarrow xy\le1\)
\(\Rightarrow\frac{1}{xy}\ge\frac{1}{1}\Rightarrow\frac{-2}{xy}\le-2\)
hay \(M\le-2\)
Dấu "=" xảy ra khi \(x=y=-1\)
Vậy \(Max_M=-2\)khi \(x=y=-1\)
c) ( Mình nghĩ bài này cho x, y, z ko âm thì mới xảy ra dấu "=" để tìm Min chứ cho x ,y ,z dương thì ko biết nữa ^_^ , mình làm bài này với điều kiện x ,y ,z ko âm nhé )
Ta có :
\(\hept{\begin{cases}2x+y+3z=6\\3x+4y-3z=4\end{cases}\Rightarrow2x+y+3z+3x+4y-3z=6+4}\)
\(\Rightarrow5x+5y=10\Rightarrow x+y=2\)
\(\Rightarrow y=2-x\)
Vì \(y=2-x\)nên \(2x+y+3z=6\Leftrightarrow2x+2-x+3z=6\)
\(\Leftrightarrow x+3z=4\Leftrightarrow3z=4-x\)
\(\Leftrightarrow z=\frac{4-x}{3}\)
Thay \(y=2-x\)và \(z=\frac{4-x}{3}\)vào \(P\)ta có :
\(P=2x+3y-4z=2x+3\left(2-x\right)-4.\frac{4-x}{3}\)
\(\Rightarrow P=2x+6-3x-\frac{16}{3}+\frac{4x}{3}\)
\(\Rightarrow P=\frac{x}{3}+\frac{2}{3}\ge\frac{2}{3}\)( Vì \(x\ge0\))
Dấu "=" xảy ra khi \(x=0\Rightarrow\hept{\begin{cases}y=2\\z=\frac{4}{3}\end{cases}}\)( Thỏa mãn điều kiện y , z ko âm )
Vậy \(Min_P=\frac{2}{3}\)khi \(\hept{\begin{cases}x=0\\y=2\\z=\frac{4}{3}\end{cases}}\)
Dễ chứng minh được: \(xy\le\frac{x^2+y^2}{2};yz\le\frac{y^2+z^2}{2};zx\le\frac{z^2+x^2}{2}\)
Do đó \(xy+yz+zx\le x^2+y^2+z^2\Leftrightarrow3\left(xy+yz+zx\right)\le x^2+y^2+z^2+2xy+2yz+2zx\)
\(3\left(xy+yz+zx\right)\le\left(x+y+z\right)^2\Leftrightarrow xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}=3\)
\(\Rightarrow A_{max}=3\Leftrightarrow x=y=z=1\)
Lời giải:
Ta có:
$21+51 = x+5y+(2x+3z)=3x+5y+3z$
$\Rightarrow 72=3(x+y+z)+2y\geq 3(x+y+z)$
$\Rightarrow x+y+z\leq 24$
Vậy $x+y+z$ có GTLN là $24$
Giá trị này đạt tại $(x,y,z)=(21,0,3)$