\(x^6+y^6\)biết \(x^2+y^2=1\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2017

GTLN của s=1

14 tháng 1 2017

\(S=x^6+y^6=x^6+3x^2y^2\left(x^2+y^2\right)+y^6-3x^2y^2\left(x^2+y^2\right)\)

\(=\left(x^2+y^2\right)^3-3x^2y^2\left(x^2+y^2\right)\)

\(=1-3x^2y^2=1-3x^2\left(1-x^2\right)\)

\(=1-3x^2+3x^4=\left(3x^4-3x^2+\frac{3}{4}\right)+1-\frac{3}{4}\)

\(=3\left(x^2-\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)

Vậy GTNN là \(\frac{1}{4}\)đạt được khi \(x^2=y^2=\frac{1}{2}\)

PS: Không có GTLN nhé

1 tháng 5 2019

Ta có : (x+y)2+7x+7y+y2+6=0

( x2 + y2 + \(\frac{49}{4}\)+ 7x + 7y + 2xy ) + y2 - \(\frac{25}{4}\)= 0

( x + y + \(\frac{7}{2}\))2 = \(\frac{25}{4}\)- y2 \(\le\frac{25}{4}\)

\(\Rightarrow\frac{-5}{4}\le x+y+\frac{7}{2}\le\frac{5}{4}\)

\(\Rightarrow\frac{-15}{4}\le x+y+1\le\frac{-5}{4}\)

\(\Rightarrow\)...... 

1 tháng 5 2019

lon so roi,

thay -5/4 thành -5/2 ; 5/4 thành 5/2

-15/4 thành -5 ; 5/2 thành 0 

6 tháng 2 2017

1) Ta có : 

\(x^2\ge0\forall x,y^2\ge0\forall y\)

\(\Rightarrow x^2+y^2\ge0\forall x,y\)

Ta lại có 

\(x^2+y^2\ge2xy\)

Để 2xy đạt giá trị nhỏ nhất thì xy đạt giá trị nhỏ nhất 

Nhưng cả x lẫn y nhất định phải cx dấu ko đk khác dấu 

Dấu "=" xảy ra khi và chỉ khi x = y 0

Vậy GTNN của x2 + y2 là 0 khi và chỉ khi x = y = 0 

6 tháng 2 2017

Bài 2:

Ta thấy: \(\left|x+1\right|^{11}\ge0\)

\(\Rightarrow\left|x+1\right|^{11}+10\ge10\)

\(\Rightarrow A\ge10\)

Dấu "=" xảy ra khi \(x=-1\)

Vậy...

Bài 3:

\(B=x^2+9x+6=x^2+9x+\frac{81}{4}-\frac{57}{4}\)

\(=\left(x^2+9x+\frac{81}{4}\right)-\frac{57}{4}\)

\(=\left(x+\frac{9}{2}\right)^2-\frac{57}{4}\ge\frac{57}{4}\)

Dấu "=" xảy ra khi \(x=-\frac{9}{2}\)

Bài 4: phân thức trên ko xác định khi mẫu bằng 0

Tức là \(x-7=0\Rightarrow x=7\)

P/s:Mấy bài này cx ko khó lắm bn tự làm sẽ thông minh hơn 

31 tháng 10 2020

Có: \(x,y\ge1\Rightarrow\left(x-1\right)\left(y-1\right)\ge0\)

\(\Leftrightarrow xy-x-y+1\ge0\Leftrightarrow xy\ge x+y-1\)

Có: \(0\le a\le1\Rightarrow a\left(a-1\right)\le0\Leftrightarrow a^2\le a\)

Khi đó: \(M=a^2+b^2+c^2+x^2+y^2+x^2\)

\(\le a+b+c+\left(x+y+z\right)^2-2\left(xy+yz+zx\right)\)

\(\le a+b+c+6\left(x+y+z\right)-2\left[2\left(x+y+z\right)-3\right]\)

\(=6-\left(x+y+z\right)+2\left(x+y+z\right)+6\)

\(=\left(x+y+z\right)+12\le6+12=18\)

Dấu "=" xảy ra khi và chỉ khi a=b=c=0; x=y=1; z=4

31 tháng 10 2020

nice solution

25 tháng 11 2018

Ta sẽ cm bổ đề sau: 

Bổ đề\(\left(a^2+b^2\right)\left(c^2+d^2\right)\ge\left(ac+bd\right)^2\) (Bunyakovski 2 số)

C/m : Ta thấy: \(\left(ad-bc\right)^2\ge0\Leftrightarrow a^2d^2-2abcd+b^2c^2\ge0\)

      \(\Leftrightarrow a^2d^2+b^2c^2\ge2abcd\Leftrightarrow a^2c^2+b^2c^2+a^2d^2+b^2d^2\ge a^2c^2+2abcd+b^2d^2\)

       \(\Leftrightarrow\left(a^2+b^2\right)\left(c^2+d^2\right)\ge\left(ac+bd\right)^2\)

Đẳng thức xảy ra khi và chỉ khi \(\frac{a}{c}=\frac{b}{d}\)

Quay lại bài toán, áp dụng bđt bunyakovski ta có :

     \(\left(x^2+y^2\right)\left(1+1\right)\ge\left(x+y\right)^2\)

\(\Leftrightarrow2\ge\left(x+y\right)^2\Leftrightarrow-\sqrt{2}\le x+y\le\sqrt{2}\)

\(\Rightarrow\hept{\begin{cases}min\left(x+y\right)=-\sqrt{2}\Leftrightarrow x=y=\frac{-1}{\sqrt{2}}\\max\left(x+y\right)=\sqrt{2}\Leftrightarrow x=y=\frac{1}{\sqrt{2}}\end{cases}}\)

24 tháng 6 2017

Theo bất đẳng thức Bunhiacopxki , ta có :

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x+y\right)^2=2^2=4\)

\(\Rightarrow2\left(x^2+y^2\right)\ge4\)

\(\Rightarrow\left(x^2+y^2\right)\ge2\)

Dấu "=" xảy ra <=> x = y = 1