Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
$y=-2x^2+4x+3=5-2(x^2-2x+1)=5-2(x-1)^2$
Vì $(x-1)^2\geq 0$ với mọi $x\in\mathbb{R}$ nên $y=5-2(x-1)^2\leq 5$
Vậy $y_{\max}=5$ khi $x=1$
Hàm số không có min.
Câu 2:
Hàm số $y$ có $a=-3<0; b=2, c=1$ nên đths có trục đối xứng $x=\frac{-b}{2a}=\frac{1}{3}$
Lập BTT ta thấy hàm số đồng biến trên $(-\infty; \frac{1}{3})$ và nghịch biến trên $(\frac{1}{3}; +\infty)$
Với $x\in (1;3)$ thì hàm luôn nghịch biến
$\Rightarrow f(3)< y< f(1)$ với mọi $x\in (1;3)$
$\Rightarrow$ hàm không có min, max.
Do ở đây tao có y=x2(1-6x)
Mà muốn tìm giá trị nhỏ nhất thì sẽ bằng: \(-\infty\)
Do ở đây tao có y=x2(1-6x)
Mà muốn tìm giá trị nhỏ nhất thì sẽ bằng: \(-\infty\)
\(=-\left(x^2-6x-8\right)\)
\(=-\left(x^2-6x+9\right)+17\)
\(=-\left(x-3\right)^2+17\le17\forall x\)
Dấu '=' xảy ra khi x=3
Từ đề bài suy ra:
Bảng biến thiên
Ta có y(-2) =5; y(2) =3
Dựa vào bảng biến thiên ta có
Chọn D.
y = x^2 -6x
Do y là số chưa biết mà muốn chuyển thì kết quả là: \(\infty\)