Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)P(x)=4x-x2+1=-(x2-4x+4)+5=-(x-2)2+5
Do (x-2)2>0
=>-(x-2)2<0
=>P(x)=-(x-2)2+5<5
=>Max P=5<=>(x-2)2=0<=>x=2
2)A(x)=x2-4x+y2-8y+6=(x2-4x+4)+(y2-8y+16)-14
=(x-2)2+(y-4)2-14
Do (x-2)2>0
(y-4)2>0
=>(x-2)2+(y-4)2>0
=>A(x)=(x-2)2+(y-4)2-14>-14
=>Min A=-14<=>(x-2)2=0 và (y-4)2=0<=>x=2 và y=4
P(x) = 4x - x^2 + 1
= - ( x^2 - 4x + 10)
= -( x^2 - 2.x.2 + 4 + 6)
= -( x- 2 )^2 - 6
Vậy GTLN của p là -6 tại x - 2 = 0 => x = 2
VẬy x = 2 thì ....
B2)
A(x) = x^2 - 4x + y^2 - 8y + 6
= x^2 - 2.x . 2 + 4 + y^2 - 2.y.4 + 16 - 14
=( x - 2)^2 + (y - 4)^2 - 14
VẬy GTNN của bt là -14
khi x - 2 = 0 => x = 2
y - 4= 0 => y=4
a) \(A=4x^2-12x+100=\left(2x\right)^2-12x+3^2+91=\left(2x-3\right)^2+91\)
Ta có: \(\left(2x-3\right)^2\ge0\forall x\inℤ\)
\(\Rightarrow\left(2x-3\right)^2+91\ge91\)
hay A \(\ge91\)
Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\)
<=> 2x-3=0
<=> 2x=3
<=> \(x=\frac{3}{2}\)
Vậy Min A=91 đạt được khi \(x=\frac{3}{2}\)
b) \(B=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
Ta có: \(-\left(x+\frac{1}{2}\right)^2\le0\forall x\)
\(\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\) hay B\(\le\frac{5}{4}\)
Dấu "=" \(\Leftrightarrow-\left(x+\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow x+\frac{1}{2}=0\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy Max B=\(\frac{5}{4}\)đạt được khi \(x=\frac{-1}{2}\)
\(C=2x^2+2xy+y^2-2x+2y+2\)
\(C=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)
\(\Leftrightarrow C=\left(x+y-1\right)^2+x^2+1\)
Ta có:
\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x;y\inℤ\\x^2\ge0\forall x\inℤ\end{cases}}\)
\(\Leftrightarrow\left(x+y-1\right)^2+x^2+1\ge1\)
hay C\(\ge\)1
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=0\end{cases}}}\)
Vậy Min C=1 đạt được khi y=1 và x=0
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
A = x2 + 4x + 7
= ( x2 + 4x + 4 ) + 3
= ( x + 2 )2 + 3
( x + 2 )2 ≥ 0 ∀ x => ( x + 2 )2 + 3 ≥ 3
Đẳng thức xảy ra <=> x + 2 = 0 => x = -2
=> MinA = 3 <=> x = -2
B = 2x2 - 6x
= 2( x2 - 3x + 9/4 ) - 9/2
= 2( x - 3/2 )2 - 9/2
2( x - 3/2 )2 ≥ 0 ∀ x => 2( x - 3/2 )2 -9/2 ≥ -9/2
Đẳng thức xảy ra <=> x - 3/2 = 0 => x = 3/2
=> MinB = -9/2 <=> x = 3/2
C = -2x2 + 8x - 15
= -2( x2 - 4x + 4 ) - 7
= -2( x - 2 )2 - 7
-2( x - 2 )2 ≤ 0 ∀ x => -2( x - 2 )2 - 7 ≤ -7
Đẳng thức xảy ra <=> x - 2 = 0 => x = 2
=> MaxC = -7 <=> x = 2
1. Tìm giá trị nhỏ nhất của biểu thức P= 2x2 - 6x
2. Tìm giá trị lớn nhất của biểu thức E=4x - x2 + 3
ta có
P = 2x^2 - 6x
= 2( x^2 - 3x + 9/4) - 9/4
= 2( x-3/2)^2 - 9/4
nhận xét 2(x-3/2)^2 >=0
=> 2(x-3/2)^2 - 9/4 >=-9/4
dấu = xảy ra khi và chỉ khi
x- 3/2 = 0
=> x= 3/2
4x - x^2 + 3
= -x^2 + 4x - 4 +7
= -(x^2 - 4x + 4) + 7
= -(x-2)^2 + 7
nhận xét -(x-2)^2 <=0
=> -(x-2)^2 + 7 <=7
đấu = xảy ra khi và chỉ khi
x-2 = 0
=> x= 2
\(\text{a)}\left(2x-1\right)^2+x+2\)
\(=4x^2-4x+1+x+2\)
\(=4x^2-3x+3\)
\(=\left(4x^2-3x+\frac{9}{16}\right)+\frac{39}{16}\)
\(=\left(2x+\frac{3}{4}\right)^2+\frac{39}{16}\)
\(\text{Vì}\left(2x-\frac{3}{4}\right)^2\ge0\)
\(\text{nên }\left(2x-\frac{3}{4}\right)^2+\frac{39}{16}\ge\frac{39}{16}\)
Vậy \(GTNN=\frac{39}{16}\),dấu bằng xảy ra khi \(x=\frac{3}{8}\)
\(\text{b)}4-x^2+2x\)
\(=\left(-x^2+2x-1\right)+5\)
\(=-\left(x^2-2x+1\right)+5\)
\(=-\left(x-1\right)^2+5\)
\(\text{Vì }-\left(x-1\right)^2\le0\)
\(\text{nên }-\left(x-1\right)^2+5\le5\)
Vậy \(GTLN=5\), dấu bằng xảy ra khi \(x=1\)
\(\text{c)}4x-x^2\)
\(=\left(-x^2+4x-4\right)+4\)
\(=-\left(x^2-4x+4\right)-4\)
\(=-\left(x-4\right)^2-4\)
\(\text{Vì }-\left(x-4\right)^2\le0\)
\(\text{nên }-\left(x-4\right)^2-4\le-4\)
Vậy \(GTLN=-4\), dấu bằng xảy ra khi \(x=4\)
\(a,\left(2x-1\right)^2+\left(x+2\right)=4x^2-4x+1+x+2\)
\(=4x^2-3x+3\)
\(=4x^2-2.2.\frac{3}{4}x+\left(\frac{3}{4}\right)^2-\left(\frac{3}{4}\right)^2+3\)
\(=\left(2x-\frac{3}{4}\right)^2+\frac{39}{16}\ge\frac{39}{16}\)
Dấu bằng xảy ra khi \(2x-\frac{3}{4}=0\Rightarrow x=\frac{3}{8}\)
Vậy \(x=\frac{3}{8}\)thì biểu thức đạt giá trị nhỏ nhất là \(\frac{39}{16}\)
\(b,4-x^2+2x=-\left(x^2-2x-4\right)\)
\(=-\left(\left(x-2\right)^2-8\right)\)
\(\left(x-2\right)^2-8\ge-8\)
\(-\left(\left(x-2\right)^2-8\right)\le8\)
Dấu bằng xảy ra khi \(x-2=0\Rightarrow x=2\)
Vậy \(x=2\)thì biểu thức đạt giá trị lớn nhất là 8
\(c,4x-x^2=-\left(x^2-4x\right)\)
\(=-\left(\left(x-2\right)^2-4\right)\)
\(\left(x-2\right)^2-4\ge-4\)
\(\Rightarrow-\left(\left(x-2\right)^2-4\right)\le4\)
Dấu bằng xảy ra khi \(x-2=0\Rightarrow x=2\)
Vậy giá trị lớn nhất của biểu thức là 4 khi x = 2
a)2x(2x+7)=4(2x+7)
2x(2x+7)-4(2x+7)=0
(2x+7)(2x-4)=0
\(\Rightarrow\orbr{\begin{cases}2x+7=0\\2x-4=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-\frac{7}{2}\\x=2\end{cases}}\)
b)Ta có:x3-4x2+ax=x3-3x2-x2+ax
=x2(x-3)-x(x-a)
Để x3-4x2+ax chia hết cho x-3 thì a=3
\(2x^2+y^2-2xy+4x+1=\left(x^2-2xy+y^2\right)+\left(x^2+4x+4\right)-3\)
\(=\left(x-y\right)^2+\left(x+2\right)^2+\left(-3\right)\)
Vì \(\left(x-y\right)^2\ge0;\left(x+2\right)^2\ge0\)
\(\Rightarrow\left(x-y\right)^2+\left(x+2\right)^2+\left(-3\right)\ge-3\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(x+2\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=y\\x=-2\end{cases}\Leftrightarrow}x=y=-2}\)
Vậy GTNN của đa thức = -3 khi và chỉ khi x=y=-2
\(A=6-2x^2+4x=-\left(2x^2-4x-6\right)\)
\(=-\left[\left(\sqrt{2}x\right)^2-2.\sqrt{2}x.\sqrt{2}+2+4\right]\)
\(=-\left[\left(\sqrt{2}x-\sqrt{2}\right)^2+4\right]=-\left(\sqrt{2}x-\sqrt{2}\right)^2-4\le-4\)
Vậy \(A_{max}=-4\Leftrightarrow\sqrt{2}x-\sqrt{2}=0\Leftrightarrow x=1\)
Nhầm
\(A=6-2x^2+4x=-\left(2x^2-4x-6\right)\)
\(=-\left[\left(\sqrt{2}x\right)^2-2.\sqrt{2}x.\sqrt{2}+2-8\right]\)
\(=-\left[\left(\sqrt{2}x-\sqrt{2}\right)^2-8\right]\)
\(=-\left(\sqrt{2}x-\sqrt{2}\right)^2+8\le8\)
Vậy \(A_{max}=8\Leftrightarrow\sqrt{2}x-\sqrt{2}=0\Leftrightarrow x=1\)