Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)
\(=\left(\frac{x-2\left(x+2\right)+x-2}{\left(x-2\right)\left(x+2\right)}\right):\left(\frac{x^2-4+10-x^2}{\left(x-2\right)\left(x+2\right)}\right)\)
\(=\left(\frac{-6}{\left(x-2\right)\left(x+2\right)}\right):\left(\frac{6}{\left(x-2\right)\left(x+2\right)}\right)=-1\)
Vậy với mọi giá trị của x thì A nguyên
\(P=\frac{x^2+x}{x^2-2x+1}\div\left(\frac{x+1}{x}+\frac{1}{x-1}+\frac{2-x^2}{x^2-x}\right)\)
a) ĐKXĐ : \(\hept{\begin{cases}x\ne0\\x\ne1\end{cases}}\)
\(=\frac{x\left(x+1\right)}{\left(x-1\right)^2}\div\left(\frac{\left(x+1\right)\left(x-1\right)}{x\left(x-1\right)}+\frac{x}{x\left(x-1\right)}+\frac{2-x^2}{x\left(x-1\right)}\right)\)
\(=\frac{x\left(x+1\right)}{\left(x-1\right)^2}\div\left(\frac{x^2-1+x+2-x^2}{x\left(x-1\right)}\right)\)
\(=\frac{x\left(x+1\right)}{\left(x-1\right)^2}\div\frac{x+1}{x\left(x-1\right)}=\frac{x\left(x+1\right)}{\left(x-1\right)^2}\times\frac{x\left(x-1\right)}{x+1}=\frac{x^2}{x-1}\)
b) Để P = -1/2 thì \(\frac{x^2}{x-1}=-\frac{1}{2}\)
=> 2x2 = -x + 1
<=> 2x2 + x - 1 = 0
<=> 2x2 - x + 2x - 1 = 0
<=> x( 2x - 1 ) + ( 2x - 1 ) = 0
<=> ( 2x - 1 )( x + 1 ) = 0
<=> x = 1/2 hoặc x = -1 ( tm )
Vậy với x = 1/2 hoặc x = -1 thì P = -1/2
c) Dự đoán MinP và đẳng thức xảy ra khi nào rồi nhưng chưa biết làm .____.
Bài 1 :
a, \(A=\frac{4x^2}{4-x^2}+\frac{2+x}{2-x}-\frac{2-x}{x+2}\)ĐK : \(x\ne\pm2\)
\(=\frac{4x^2+\left(2+x\right)^2-\left(2-x\right)^2}{\left(2-x\right)\left(x+2\right)}=\frac{4x^2+x^2+4x+4-\left(x^2-4x+4\right)}{\left(2-x\right)\left(x+2\right)}\)
\(=\frac{5x^2+4x+4-x^2+4x-4}{\left(2-x\right)\left(x+2\right)}=\frac{4x^2+8x}{\left(2-x\right)\left(x+2\right)}=\frac{4x\left(x+2\right)}{\left(2-x\right)\left(x+2\right)}=\frac{4x}{2-x}\)
b, Ta có P = A : B hay \(\frac{4x}{2-x}.\frac{x\left(2-x\right)}{x-3}=\frac{4x^2}{x-3}< 0\)
\(\Rightarrow x-3< 0\)do \(4x^2\ge0\forall x\)
\(\Leftrightarrow x< 3\)
Kết hợp với giả thiết ta có : \(x< 3;x\ne\pm2\)
quên mất, Với P = -1 hay \(\frac{4x^2}{x-3}=-1\Rightarrow4x^2=-x+3\Leftrightarrow4x^2+x-3=0\)
\(\Leftrightarrow4x^2+4x-3x-3=0\Leftrightarrow4x\left(x+1\right)-3\left(x+1\right)=0\)
\(\Leftrightarrow\left(4x-3\right)\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{4}\\x=-1\end{cases}}\)
Vậy với P = -1 thì x = -1 ; x = 3/4
Bài 2 :
a, \(A=\left(\frac{3-x}{x+3}.\frac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)ĐK : \(x\ne\pm3\)
\(=\left(-1+\frac{x}{x+3}\right).\frac{x+3}{3x^2}=\left(\frac{-3}{x+3}\right).\frac{x+3}{3x^2}=\frac{-1}{x^2}\)
b, Ta có : \(x^2-1=0\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
TH1 : Thay x = 1 vào biểu thức trên ta được : \(\frac{-1}{1}=-1\)tương tự với 1
TH2 : ...
c, Ta có : A < -1 hay \(\frac{-1}{x^2}< 1\Leftrightarrow\frac{-1}{x^2}-1< 0\Leftrightarrow\frac{-1-x^2}{x^2}< 0\)
\(\Rightarrow-\left(x^2+1\right)< 0\)do \(x^2\ge0\forall x\)
\(\Leftrightarrow x^2< -1\)( vô lí )
Vậy ko có giá trị x thỏa mãn A < -1
d, Ta có : \(A=\frac{x}{8}\)hay \(-\frac{1}{x^2}=\frac{x}{8}\Rightarrow x^3=-8\Leftrightarrow x=-2\)
Vậy với A = x/8 thì x = -2
\(5x-6-\left(x+2\right)=0\)
\(\Leftrightarrow5x-6-x-2=0\)
\(\Leftrightarrow5x-x=6+2\)
\(\Leftrightarrow4x=8\)
\(\Leftrightarrow x=2\)
Vậy x = 2 là nghiệm của phương trình trên
b)\(3x-6x^2=0\)
\(\Leftrightarrow3x\left(1-2x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x=0\\1-2x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}}\)
Vậy phương trình trên có tập nghiệm là: S = {0;1/2}
#hoktot<3#
a, \(5x-6-\left(x+2\right)=0\)
\(\Leftrightarrow5x-6-x-2=0\)
\(\Leftrightarrow4x-8=0\)
\(\Leftrightarrow4x=8\)
\(\Leftrightarrow x=2\)
Vậy x=2 là nghiệm của đa thức
b, \(3x-6x^2=0\)
\(\Leftrightarrow3x.\left(1-2x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x=0\\1-2x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}\)
Vậy đa thức có 2 nghiệm \(x=\left\{0,\frac{1}{2}\right\}\)
\(a^2+b^2+2=2\left(a+b\right)\)
\(\Leftrightarrow a^2-2a+1+b^2-2b+1=0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}a-1=0\\b-1=0\end{cases}}\Leftrightarrow a=b=1\)
\(A=a^{2022}+b^{2022}=2\)
a, \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\Leftrightarrow\frac{35x-5}{30}+\frac{60x}{30}=\frac{96-6x}{30}\)
\(\Rightarrow35x-5+60x=96-6x\Leftrightarrow101x=101\Leftrightarrow x=1\)
Vậy tập nghiệm của phương trình là S = { 1 }
b, tương tự a
c, \(\frac{x-23}{24}+\frac{x-23}{25}=\frac{x-23}{26}+\frac{x-23}{27}\)
\(\Leftrightarrow\left(x-23\right)\left(\frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}\ne0\right)=0\Leftrightarrow x=23\)
Vậy tập nghiệm của phương trình là S = { 23 }
d, \(\frac{x+1}{2004}+\frac{x+2}{2003}=\frac{x+3}{2002}+\frac{x+4}{2001}\)
\(\Leftrightarrow\frac{x+1}{2004}+1+\frac{x+2}{2003}+1=\frac{x+3}{2002}+1+\frac{x+4}{2001}+1\)
\(\Leftrightarrow\frac{x+2005}{2004}+\frac{x+2005}{2003}=\frac{x+2005}{2002}+\frac{x+2005}{2001}\)
\(\Leftrightarrow\left(x+2005\right)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\ne0\right)=0\Leftrightarrow x=-2005\)
Vậy tập nghiệm của phương trình là S = { -2005 }
e, tương tự d